Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092053124> ?p ?o ?g. }
- W2092053124 endingPage "1966" @default.
- W2092053124 startingPage "1957" @default.
- W2092053124 abstract "In this study, two probabilistic machine-learning algorithms were compared for in silico target prediction of bioactive molecules, namely the well-established Laplacian-modified Naïve Bayes classifier (NB) and the more recently introduced (to Cheminformatics) Parzen-Rosenblatt Window. Both classifiers were trained in conjunction with circular fingerprints on a large data set of bioactive compounds extracted from ChEMBL, covering 894 human protein targets with more than 155,000 ligand-protein pairs. This data set is also provided as a benchmark data set for future target prediction methods due to its size as well as the number of bioactivity classes it contains. In addition to evaluating the methods, different performance measures were explored. This is not as straightforward as in binary classification settings, due to the number of classes, the possibility of multiple class memberships, and the need to translate model scores into “yes/no” predictions for assessing model performance. Both algorithms achieved a recall of correct targets that exceeds 80% in the top 1% of predictions. Performance depends significantly on the underlying diversity and size of a given class of bioactive compounds, with small classes and low structural similarity affecting both algorithms to different degrees. When tested on an external test set extracted from WOMBAT covering more than 500 targets by excluding all compounds with Tanimoto similarity above 0.8 to compounds from the ChEMBL data set, the current methodologies achieved a recall of 63.3% and 66.6% among the top 1% for Naïve Bayes and Parzen-Rosenblatt Window, respectively. While those numbers seem to indicate lower performance, they are also more realistic for settings where protein targets need to be established for novel chemical substances." @default.
- W2092053124 created "2016-06-24" @default.
- W2092053124 creator A5001996295 @default.
- W2092053124 creator A5014283781 @default.
- W2092053124 creator A5026643759 @default.
- W2092053124 creator A5046050351 @default.
- W2092053124 creator A5055043798 @default.
- W2092053124 creator A5064259122 @default.
- W2092053124 creator A5068010434 @default.
- W2092053124 creator A5076832707 @default.
- W2092053124 date "2013-07-24" @default.
- W2092053124 modified "2023-09-26" @default.
- W2092053124 title "In Silico Target Predictions: Defining a Benchmarking Data Set and Comparison of Performance of the Multiclass Naïve Bayes and Parzen-Rosenblatt Window" @default.
- W2092053124 cites W1487233798 @default.
- W2092053124 cites W1559072304 @default.
- W2092053124 cites W1972821149 @default.
- W2092053124 cites W1981133869 @default.
- W2092053124 cites W1986516145 @default.
- W2092053124 cites W1988037271 @default.
- W2092053124 cites W1991820123 @default.
- W2092053124 cites W2001415793 @default.
- W2092053124 cites W2001520289 @default.
- W2092053124 cites W2014582878 @default.
- W2092053124 cites W2018207366 @default.
- W2092053124 cites W2028326441 @default.
- W2092053124 cites W2034042429 @default.
- W2092053124 cites W2040369353 @default.
- W2092053124 cites W2044542784 @default.
- W2092053124 cites W2052214665 @default.
- W2092053124 cites W2054118966 @default.
- W2092053124 cites W2055043387 @default.
- W2092053124 cites W2057069496 @default.
- W2092053124 cites W2057409466 @default.
- W2092053124 cites W2065540447 @default.
- W2092053124 cites W2070789802 @default.
- W2092053124 cites W2075258506 @default.
- W2092053124 cites W2078653892 @default.
- W2092053124 cites W2079223054 @default.
- W2092053124 cites W2081123119 @default.
- W2092053124 cites W2082252201 @default.
- W2092053124 cites W2093775482 @default.
- W2092053124 cites W2096541451 @default.
- W2092053124 cites W2096560421 @default.
- W2092053124 cites W2099536767 @default.
- W2092053124 cites W2100916935 @default.
- W2092053124 cites W2105778209 @default.
- W2092053124 cites W2118020555 @default.
- W2092053124 cites W2131272506 @default.
- W2092053124 cites W2137507165 @default.
- W2092053124 cites W2138010103 @default.
- W2092053124 cites W2139510803 @default.
- W2092053124 cites W2162011385 @default.
- W2092053124 cites W2162194965 @default.
- W2092053124 cites W2320034101 @default.
- W2092053124 doi "https://doi.org/10.1021/ci300435j" @default.
- W2092053124 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23829430" @default.
- W2092053124 hasPublicationYear "2013" @default.
- W2092053124 type Work @default.
- W2092053124 sameAs 2092053124 @default.
- W2092053124 citedByCount "129" @default.
- W2092053124 countsByYear W20920531242013 @default.
- W2092053124 countsByYear W20920531242014 @default.
- W2092053124 countsByYear W20920531242015 @default.
- W2092053124 countsByYear W20920531242016 @default.
- W2092053124 countsByYear W20920531242017 @default.
- W2092053124 countsByYear W20920531242018 @default.
- W2092053124 countsByYear W20920531242019 @default.
- W2092053124 countsByYear W20920531242020 @default.
- W2092053124 countsByYear W20920531242021 @default.
- W2092053124 countsByYear W20920531242022 @default.
- W2092053124 countsByYear W20920531242023 @default.
- W2092053124 crossrefType "journal-article" @default.
- W2092053124 hasAuthorship W2092053124A5001996295 @default.
- W2092053124 hasAuthorship W2092053124A5014283781 @default.
- W2092053124 hasAuthorship W2092053124A5026643759 @default.
- W2092053124 hasAuthorship W2092053124A5046050351 @default.
- W2092053124 hasAuthorship W2092053124A5055043798 @default.
- W2092053124 hasAuthorship W2092053124A5064259122 @default.
- W2092053124 hasAuthorship W2092053124A5068010434 @default.
- W2092053124 hasAuthorship W2092053124A5076832707 @default.
- W2092053124 hasConcept C119857082 @default.
- W2092053124 hasConcept C12267149 @default.
- W2092053124 hasConcept C124101348 @default.
- W2092053124 hasConcept C153180895 @default.
- W2092053124 hasConcept C154945302 @default.
- W2092053124 hasConcept C169903167 @default.
- W2092053124 hasConcept C33923547 @default.
- W2092053124 hasConcept C41008148 @default.
- W2092053124 hasConcept C52001869 @default.
- W2092053124 hasConcept C60644358 @default.
- W2092053124 hasConcept C63222358 @default.
- W2092053124 hasConcept C68762167 @default.
- W2092053124 hasConcept C74187038 @default.
- W2092053124 hasConcept C86803240 @default.
- W2092053124 hasConceptScore W2092053124C119857082 @default.
- W2092053124 hasConceptScore W2092053124C12267149 @default.
- W2092053124 hasConceptScore W2092053124C124101348 @default.
- W2092053124 hasConceptScore W2092053124C153180895 @default.