Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092092114> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2092092114 endingPage "853" @default.
- W2092092114 startingPage "852" @default.
- W2092092114 abstract "To the Editor: Dr. Tinker [1] comments that one Nobel prize winner has fallen victim to the lure of this subject (quest for a mechanism of anesthetic action). Linus Pauling postulated that anesthesia was due to hydrate microcrystals or clathrates. Tinker asserts that the notion of the formation of ice crystals around anesthetic molecules is wrong. Clathrate formation around anesthetic molecules was not in error. Clathrates do form around all hydrophobic molecules in water. It is now well established that the formation of clathrates is the main mechanism of solvation of all hydrophobic molecules into water [2-5]. The formation of ice around hydrophobic molecules is clearly demonstrated by the increase of heat capacities of the hydrophobic molecules when dissolved in water [2-5]. The increase of the heat capacities is caused by the melting of the ice covering the hydrophobic molecules when heated. The clathrate formation can also be visualized by the decrease of the volume (partial molar volume) of anesthetics when dissolved in water. Mori et al. [6] have shown that the volumes of volatile anesthetics decrease in water compared with the liquid states or in the nonpolar solvent, n-decane. (See Table 1 of this letter.) The reduction in volume occurs mainly because the clathrate contains guest molecules in the cage-like structure. The total volume is smaller than the free anesthetic molecules floating in solvents.Table 1: Volumes of Volatile Anesthetics, Expressed in cm3/molThere appears to be a misconception on ice structure. The solid ice formed at 0 degrees C is in a steady state. The microcrystals in the bulk water at higher temperatures are short-lived. They are formed and destroyed with a time scale of 10-11-10-12 s [7] and are designated as flickering clusters [7]. These flickering structures are stabilized when interfaced with hydrophobic surface, and the lifetime is prolonged to about 10-5 s. What Eger et al. [8] demonstrated was that the anesthetics did not form stable ice at 0 degrees C. They did not refute the presence of structured water at higher temperatures. Clathrate formation is now considered to be the most important factor for the stability of macromolecules, including proteins and lipid membranes, in water. It is also important in anesthesia mechanisms because the initial event of hydrophobic molecules interacting with macromolecules is the destruction of clathrate structures both at the anesthetic molecules and at the hydrophobic binding sites on proteins and membranes [9]. The destruction of clathrates means that the hydrophobic surface is dehydrated. The colloid theory of Claude Bernard is in accord with the modern theory on the structural stability of proteins, since he proposed that diethylether dehydrates protein molecules. The comment that bacterial luciferase emits light by reacting with adenosine triphosphate is misinformed. Adenosine triphosphate is not involved in bacterial luminescence. The attitude that the mechanism of anesthesia is an arcane subject to clinical anesthesiologists is disappointing. It shows a tendency that medicine is becoming more service-oriented and geared toward vocational training. Supported by the Department of Veterans Administration Medical Research Funds. Issaku Ueda, MD Anesthesia Service, Department of Veterans Administration Medical Center, Salt Lake City, UT 84148" @default.
- W2092092114 created "2016-06-24" @default.
- W2092092114 creator A5006078744 @default.
- W2092092114 date "1995-04-01" @default.
- W2092092114 modified "2023-09-25" @default.
- W2092092114 title "From Ice Crystals to Fruit Flies" @default.
- W2092092114 cites W1964172792 @default.
- W2092092114 cites W1967561978 @default.
- W2092092114 cites W2008846230 @default.
- W2092092114 cites W2009203298 @default.
- W2092092114 cites W2021706112 @default.
- W2092092114 cites W2096677335 @default.
- W2092092114 doi "https://doi.org/10.1097/00000539-199504000-00050" @default.
- W2092092114 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/7893056" @default.
- W2092092114 hasPublicationYear "1995" @default.
- W2092092114 type Work @default.
- W2092092114 sameAs 2092092114 @default.
- W2092092114 citedByCount "0" @default.
- W2092092114 crossrefType "journal-article" @default.
- W2092092114 hasAuthorship W2092092114A5006078744 @default.
- W2092092114 hasBestOaLocation W20920921141 @default.
- W2092092114 hasConcept C100402318 @default.
- W2092092114 hasConcept C121332964 @default.
- W2092092114 hasConcept C125388846 @default.
- W2092092114 hasConcept C153294291 @default.
- W2092092114 hasConcept C159467904 @default.
- W2092092114 hasConcept C178790620 @default.
- W2092092114 hasConcept C185592680 @default.
- W2092092114 hasConcept C20556612 @default.
- W2092092114 hasConcept C2778162923 @default.
- W2092092114 hasConcept C2780471494 @default.
- W2092092114 hasConcept C2781060337 @default.
- W2092092114 hasConcept C32909587 @default.
- W2092092114 hasConcept C42219234 @default.
- W2092092114 hasConcept C71924100 @default.
- W2092092114 hasConcept C8010536 @default.
- W2092092114 hasConcept C97355855 @default.
- W2092092114 hasConceptScore W2092092114C100402318 @default.
- W2092092114 hasConceptScore W2092092114C121332964 @default.
- W2092092114 hasConceptScore W2092092114C125388846 @default.
- W2092092114 hasConceptScore W2092092114C153294291 @default.
- W2092092114 hasConceptScore W2092092114C159467904 @default.
- W2092092114 hasConceptScore W2092092114C178790620 @default.
- W2092092114 hasConceptScore W2092092114C185592680 @default.
- W2092092114 hasConceptScore W2092092114C20556612 @default.
- W2092092114 hasConceptScore W2092092114C2778162923 @default.
- W2092092114 hasConceptScore W2092092114C2780471494 @default.
- W2092092114 hasConceptScore W2092092114C2781060337 @default.
- W2092092114 hasConceptScore W2092092114C32909587 @default.
- W2092092114 hasConceptScore W2092092114C42219234 @default.
- W2092092114 hasConceptScore W2092092114C71924100 @default.
- W2092092114 hasConceptScore W2092092114C8010536 @default.
- W2092092114 hasConceptScore W2092092114C97355855 @default.
- W2092092114 hasIssue "4" @default.
- W2092092114 hasLocation W20920921141 @default.
- W2092092114 hasLocation W20920921142 @default.
- W2092092114 hasOpenAccess W2092092114 @default.
- W2092092114 hasPrimaryLocation W20920921141 @default.
- W2092092114 hasRelatedWork W121180749 @default.
- W2092092114 hasRelatedWork W1968389100 @default.
- W2092092114 hasRelatedWork W1974995894 @default.
- W2092092114 hasRelatedWork W2051245466 @default.
- W2092092114 hasRelatedWork W2078886466 @default.
- W2092092114 hasRelatedWork W2225974560 @default.
- W2092092114 hasRelatedWork W2325254773 @default.
- W2092092114 hasRelatedWork W2584571725 @default.
- W2092092114 hasRelatedWork W2924720708 @default.
- W2092092114 hasRelatedWork W4376621204 @default.
- W2092092114 hasVolume "80" @default.
- W2092092114 isParatext "false" @default.
- W2092092114 isRetracted "false" @default.
- W2092092114 magId "2092092114" @default.
- W2092092114 workType "article" @default.