Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092109043> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2092109043 endingPage "391" @default.
- W2092109043 startingPage "389" @default.
- W2092109043 abstract "The relation between pressure Pm and volume Vm in the ventricles near end-systole when the cardiac muscle reaches its maximum state of activation (known as the end-systolic pressure–volume relation (ESPVR)) has been the object of extensive studies over the past years [ 1 Burkhoff D. Mirsky I. Suga H. Assesment of systolic and diastolic ventricular properties via pressure–volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol. 2005; 289: H501-H512 Crossref PubMed Scopus (528) Google Scholar , 2 De Tombe P.P. Jones S. Burkhoff D. Hunter W.C. Kass D.A. Ventricular stroke work and efficiency both remain nearly optimal despite altered vascular loading. Am J Physiol Heart Circ Physiol. 1993; 264: H1817-H1824 Google Scholar , 3 Brimioulle S. Waulthy P. Ewalenko P. et al. Single-beat estimation of right ventricular end-systolic pressure–volume relationship. Am J Physiol Heart Circ Physiol. 2003; 284: H1625-H1630 Crossref PubMed Scopus (234) Google Scholar , 4 Kjorstad K.E. Korvald C. Myrmel T. Pressure–volume-based single-beat estimation cannot predict left ventricular contractility in vivo. Am J Physiol Heart Circ Physiol. 2002; 282: H1739-H1750 Crossref PubMed Scopus (47) Google Scholar , 5 Shoucri R.M. Theoretical study of the pressure–volume relation in left ventricle. Am J Physiol Heart Circ Physiol. 1991; 260: H282-H291 Google Scholar , 6 Shoucri R.M. ESPVR, ejection fraction and heart failure. Cardiovasc Eng. 2010; 10: 207-212 Crossref PubMed Scopus (11) Google Scholar , 7 Shoucri R.M. Numerical calculation of the slope and intercept of ESPVR. in: Knets I. Brebbia C.A. Miftahof R. Kasyanov V. Modelling in Medicine and Biology IX. WIT Press, Southanpton, Boston2011 Google Scholar , 8 Shoucri RM, Calculation of parameters of end-systolic pressure–volume relation in the ventricles, Math. and Comp. Mod. in press. Google Scholar , 9 Azancot I. Masquet C. Bourthoumieux Georgiopoulos G. Slama R. Bouvrain Y. Myocardial hypertrophy, rate of change of free wall thickness and directional components of ventricular power in man. J Physiol. 1981; 77 (Paris): 695-703 Google Scholar , 10 Burkhoff D. Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol. 1986; 250: R1021-R1027 PubMed Google Scholar , 11 Asanoi H. Sasayama S. Kamegama T. Ventriculo-arterial coupling in normal and failing heart in humans. Circ Res. 1989; 65: 91-98 Crossref Scopus (287) Google Scholar ]. A non-invasive method to calculate some of the parameters of the non-linear ESPVR is presented in this communication. In a model used by the author in [ 5 Shoucri R.M. Theoretical study of the pressure–volume relation in left ventricle. Am J Physiol Heart Circ Physiol. 1991; 260: H282-H291 Google Scholar , 6 Shoucri R.M. ESPVR, ejection fraction and heart failure. Cardiovasc Eng. 2010; 10: 207-212 Crossref PubMed Scopus (11) Google Scholar , 7 Shoucri R.M. Numerical calculation of the slope and intercept of ESPVR. in: Knets I. Brebbia C.A. Miftahof R. Kasyanov V. Modelling in Medicine and Biology IX. WIT Press, Southanpton, Boston2011 Google Scholar , 8 Shoucri RM, Calculation of parameters of end-systolic pressure–volume relation in the ventricles, Math. and Comp. Mod. in press. Google Scholar ] the left ventricle is represented as a thick-walled cylinder contracting symmetrically as shown in Fig. 1. The symmetrical helical structure of the myocardial fibres will generate a radial active force per unit volume of the myocardium Dr(r). The active pressure developed by the force Dr(r) on the inner surface of the myocardium (endocardium) can de expressed as: ∫ r i r o D r r d r = D ¯ h (1) where D̅ is an average value of Dr(r) estimated by the mean value theorem, h=ro–ri is the thickness of the myocardium. To follow the practice of physiologist we shall use the notation D̅h≈Piso the isovolumic pressure." @default.
- W2092109043 created "2016-06-24" @default.
- W2092109043 creator A5006805201 @default.
- W2092109043 date "2011-09-01" @default.
- W2092109043 modified "2023-09-27" @default.
- W2092109043 title "A non-invasive method to calculate parameters of non-linear end-systolic pressure–volume relation" @default.
- W2092109043 cites W1777904247 @default.
- W2092109043 cites W2076922417 @default.
- W2092109043 cites W2085979656 @default.
- W2092109043 cites W2098390820 @default.
- W2092109043 cites W2146971940 @default.
- W2092109043 cites W2151802250 @default.
- W2092109043 cites W2223820758 @default.
- W2092109043 cites W2408959566 @default.
- W2092109043 cites W2427011220 @default.
- W2092109043 cites W590011389 @default.
- W2092109043 cites W1998017297 @default.
- W2092109043 doi "https://doi.org/10.1016/j.ijcard.2011.06.127" @default.
- W2092109043 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21767884" @default.
- W2092109043 hasPublicationYear "2011" @default.
- W2092109043 type Work @default.
- W2092109043 sameAs 2092109043 @default.
- W2092109043 citedByCount "2" @default.
- W2092109043 countsByYear W20921090432013 @default.
- W2092109043 countsByYear W20921090432015 @default.
- W2092109043 crossrefType "journal-article" @default.
- W2092109043 hasAuthorship W2092109043A5006805201 @default.
- W2092109043 hasConcept C126322002 @default.
- W2092109043 hasConcept C164705383 @default.
- W2092109043 hasConcept C169554166 @default.
- W2092109043 hasConcept C185592680 @default.
- W2092109043 hasConcept C2778198053 @default.
- W2092109043 hasConcept C2778921608 @default.
- W2092109043 hasConcept C2779473830 @default.
- W2092109043 hasConcept C55493867 @default.
- W2092109043 hasConcept C57900726 @default.
- W2092109043 hasConcept C65882447 @default.
- W2092109043 hasConcept C71924100 @default.
- W2092109043 hasConcept C78085059 @default.
- W2092109043 hasConcept C80461066 @default.
- W2092109043 hasConcept C83867959 @default.
- W2092109043 hasConcept C84393581 @default.
- W2092109043 hasConceptScore W2092109043C126322002 @default.
- W2092109043 hasConceptScore W2092109043C164705383 @default.
- W2092109043 hasConceptScore W2092109043C169554166 @default.
- W2092109043 hasConceptScore W2092109043C185592680 @default.
- W2092109043 hasConceptScore W2092109043C2778198053 @default.
- W2092109043 hasConceptScore W2092109043C2778921608 @default.
- W2092109043 hasConceptScore W2092109043C2779473830 @default.
- W2092109043 hasConceptScore W2092109043C55493867 @default.
- W2092109043 hasConceptScore W2092109043C57900726 @default.
- W2092109043 hasConceptScore W2092109043C65882447 @default.
- W2092109043 hasConceptScore W2092109043C71924100 @default.
- W2092109043 hasConceptScore W2092109043C78085059 @default.
- W2092109043 hasConceptScore W2092109043C80461066 @default.
- W2092109043 hasConceptScore W2092109043C83867959 @default.
- W2092109043 hasConceptScore W2092109043C84393581 @default.
- W2092109043 hasIssue "3" @default.
- W2092109043 hasLocation W20921090431 @default.
- W2092109043 hasLocation W20921090432 @default.
- W2092109043 hasOpenAccess W2092109043 @default.
- W2092109043 hasPrimaryLocation W20921090431 @default.
- W2092109043 hasRelatedWork W1981163430 @default.
- W2092109043 hasRelatedWork W2001557792 @default.
- W2092109043 hasRelatedWork W2122092483 @default.
- W2092109043 hasRelatedWork W2316342240 @default.
- W2092109043 hasRelatedWork W2411727705 @default.
- W2092109043 hasRelatedWork W2413390633 @default.
- W2092109043 hasRelatedWork W2912421895 @default.
- W2092109043 hasRelatedWork W2954999431 @default.
- W2092109043 hasRelatedWork W3100858163 @default.
- W2092109043 hasRelatedWork W4302760406 @default.
- W2092109043 hasVolume "151" @default.
- W2092109043 isParatext "false" @default.
- W2092109043 isRetracted "false" @default.
- W2092109043 magId "2092109043" @default.
- W2092109043 workType "article" @default.