Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092138338> ?p ?o ?g. }
- W2092138338 endingPage "691" @default.
- W2092138338 startingPage "683" @default.
- W2092138338 abstract "Summary The present study focuses on the feasibility of a precise 3D numerical modeling coupled with X-ray computed tomography (CT), which enables simple analysis of heterogeneous fracture flows within reservoir core samples, as well as the measurement of porosity and permeability. A numerical modeling was developed and applied to two fractured granite core samples. One of the samples had an artificial single fracture (sample dimensions: 100 mm in diameter, 150 mm in length), and the other had natural multiple fractures (sample dimensions: 100 mm in diameter, 120 mm in length). A linear relationship between the CT value and the fracture aperture (fracture-aperture calibration curve) was obtained by X-ray CT scanning for a fracture-aperture calibration standard while varying the aperture from 0.1 to 0.5 mm. With the fracture-aperture calibration curve, 3D distributions of the CT value for the samples (voxel dimensions: 0.35×0.35×0.50 mm3) were converted into fracture-aperture distributions in order to obtain fracture models for these samples. The numerical porosities reproduced the experimental porosities within factors of approximately 1.3 and 1.1 for the single fracture and the multiple fractures, respectively. Using the fracture models, a single-phase flow simulation was also performed with a local cubic law-based fracture-flow model for steady-state laminar flow of a viscous and incompressible fluid. The numerically obtained permeabilities were larger than the experimentally obtained permeabilities by factors of approximately 2.2 and 2.7 for the single fracture and the multiple fractures, respectively. However, these discrepancies can be reduced to approximately 1.3—2.1 and 1.6-2.6, respectively, by simply using the correction factor for the cubic-law equation proposed by Witherspoon et al. (1980). Consequently, a precise numerical modeling coupled with X-ray CT is essentially feasible. Furthermore, the development of preferential flow paths (i.e., channeling flow) was clearly demonstrated for multiple fractures, which is much more challenging to achieve by most other methods. Further progress in modeling should enable the in-situ evaluation of heterogeneous fracture flow within reservoir core samples, as well as the clarification of the impacts of the heterogeneity on the productivity of wells and, for example, the efficiency of recovery by water-/gasflooding." @default.
- W2092138338 created "2016-06-24" @default.
- W2092138338 creator A5009553496 @default.
- W2092138338 creator A5010454959 @default.
- W2092138338 creator A5026208087 @default.
- W2092138338 creator A5038203768 @default.
- W2092138338 creator A5042846506 @default.
- W2092138338 creator A5047655089 @default.
- W2092138338 creator A5076240599 @default.
- W2092138338 creator A5078807528 @default.
- W2092138338 date "2011-06-09" @default.
- W2092138338 modified "2023-10-14" @default.
- W2092138338 title "Precise 3D Numerical Modeling of Fracture Flow Coupled With X-Ray Computed Tomography for Reservoir Core Samples" @default.
- W2092138338 cites W1566448103 @default.
- W2092138338 cites W1631682434 @default.
- W2092138338 cites W1632317815 @default.
- W2092138338 cites W1658882057 @default.
- W2092138338 cites W1901134081 @default.
- W2092138338 cites W1964836883 @default.
- W2092138338 cites W1976810927 @default.
- W2092138338 cites W2003441325 @default.
- W2092138338 cites W2006493549 @default.
- W2092138338 cites W2007108813 @default.
- W2092138338 cites W2010339945 @default.
- W2092138338 cites W2010382838 @default.
- W2092138338 cites W2012474102 @default.
- W2092138338 cites W2015829422 @default.
- W2092138338 cites W2031818011 @default.
- W2092138338 cites W2031924106 @default.
- W2092138338 cites W2037191042 @default.
- W2092138338 cites W2039988411 @default.
- W2092138338 cites W2044285635 @default.
- W2092138338 cites W2044751804 @default.
- W2092138338 cites W2045350840 @default.
- W2092138338 cites W2045956763 @default.
- W2092138338 cites W2048615184 @default.
- W2092138338 cites W2049177350 @default.
- W2092138338 cites W2054494420 @default.
- W2092138338 cites W2073530287 @default.
- W2092138338 cites W2080131712 @default.
- W2092138338 cites W2088651667 @default.
- W2092138338 cites W2091991433 @default.
- W2092138338 cites W2114820173 @default.
- W2092138338 cites W2120138270 @default.
- W2092138338 cites W2159094700 @default.
- W2092138338 cites W2167861072 @default.
- W2092138338 cites W2171231425 @default.
- W2092138338 doi "https://doi.org/10.2118/146643-pa" @default.
- W2092138338 hasPublicationYear "2011" @default.
- W2092138338 type Work @default.
- W2092138338 sameAs 2092138338 @default.
- W2092138338 citedByCount "29" @default.
- W2092138338 countsByYear W20921383382012 @default.
- W2092138338 countsByYear W20921383382013 @default.
- W2092138338 countsByYear W20921383382014 @default.
- W2092138338 countsByYear W20921383382015 @default.
- W2092138338 countsByYear W20921383382016 @default.
- W2092138338 countsByYear W20921383382017 @default.
- W2092138338 countsByYear W20921383382018 @default.
- W2092138338 countsByYear W20921383382019 @default.
- W2092138338 countsByYear W20921383382020 @default.
- W2092138338 countsByYear W20921383382021 @default.
- W2092138338 countsByYear W20921383382023 @default.
- W2092138338 crossrefType "journal-article" @default.
- W2092138338 hasAuthorship W2092138338A5009553496 @default.
- W2092138338 hasAuthorship W2092138338A5010454959 @default.
- W2092138338 hasAuthorship W2092138338A5026208087 @default.
- W2092138338 hasAuthorship W2092138338A5038203768 @default.
- W2092138338 hasAuthorship W2092138338A5042846506 @default.
- W2092138338 hasAuthorship W2092138338A5047655089 @default.
- W2092138338 hasAuthorship W2092138338A5076240599 @default.
- W2092138338 hasAuthorship W2092138338A5078807528 @default.
- W2092138338 hasConcept C105795698 @default.
- W2092138338 hasConcept C119128265 @default.
- W2092138338 hasConcept C120665830 @default.
- W2092138338 hasConcept C121332964 @default.
- W2092138338 hasConcept C127313418 @default.
- W2092138338 hasConcept C159985019 @default.
- W2092138338 hasConcept C163716698 @default.
- W2092138338 hasConcept C165838908 @default.
- W2092138338 hasConcept C192562407 @default.
- W2092138338 hasConcept C23531484 @default.
- W2092138338 hasConcept C24890656 @default.
- W2092138338 hasConcept C33923547 @default.
- W2092138338 hasConcept C43369102 @default.
- W2092138338 hasConcept C57879066 @default.
- W2092138338 hasConcept C6648577 @default.
- W2092138338 hasConcept C76563973 @default.
- W2092138338 hasConcept C78336883 @default.
- W2092138338 hasConcept C90278072 @default.
- W2092138338 hasConceptScore W2092138338C105795698 @default.
- W2092138338 hasConceptScore W2092138338C119128265 @default.
- W2092138338 hasConceptScore W2092138338C120665830 @default.
- W2092138338 hasConceptScore W2092138338C121332964 @default.
- W2092138338 hasConceptScore W2092138338C127313418 @default.
- W2092138338 hasConceptScore W2092138338C159985019 @default.
- W2092138338 hasConceptScore W2092138338C163716698 @default.
- W2092138338 hasConceptScore W2092138338C165838908 @default.