Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092147712> ?p ?o ?g. }
- W2092147712 endingPage "8326" @default.
- W2092147712 startingPage "8316" @default.
- W2092147712 abstract "In this study, Artificial Neural Network (ANN) and Simulated Annealing (SA) techniques were integrated labeled as integrated ANN-SA to estimate optimal process parameters in abrasive waterjet (AWJ) machining operation. The considered process parameters include traverse speed, waterjet pressure, standoff distance, abrasive grit size and abrasive flow rate. The quality of the cutting of machined-material is assessed by looking to the roughness average value (Ra). The optimal values of the process parameters are targeted for giving a minimum value of Ra. It was evidence that integrated ANN-SA is capable of giving much lower value of Ra at the recommended optimal process parameters compared to the result of experimental and ANN single-based modeling. The number of iterations for the optimal solutions is also decreased compared to the result of SA single-based optimization." @default.
- W2092147712 created "2016-06-24" @default.
- W2092147712 creator A5031228757 @default.
- W2092147712 creator A5053060236 @default.
- W2092147712 creator A5086100690 @default.
- W2092147712 date "2011-07-01" @default.
- W2092147712 modified "2023-10-16" @default.
- W2092147712 title "Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA" @default.
- W2092147712 cites W1501253171 @default.
- W2092147712 cites W1966491060 @default.
- W2092147712 cites W1969490547 @default.
- W2092147712 cites W1970079504 @default.
- W2092147712 cites W1970262510 @default.
- W2092147712 cites W1978618432 @default.
- W2092147712 cites W1980339637 @default.
- W2092147712 cites W1992991167 @default.
- W2092147712 cites W1999531737 @default.
- W2092147712 cites W2014223541 @default.
- W2092147712 cites W2018955696 @default.
- W2092147712 cites W2024060531 @default.
- W2092147712 cites W2026121044 @default.
- W2092147712 cites W2038862603 @default.
- W2092147712 cites W2046422035 @default.
- W2092147712 cites W2053267097 @default.
- W2092147712 cites W2055735915 @default.
- W2092147712 cites W2073147877 @default.
- W2092147712 cites W2077658359 @default.
- W2092147712 cites W2081106685 @default.
- W2092147712 cites W2088310010 @default.
- W2092147712 cites W2088347837 @default.
- W2092147712 cites W2093264658 @default.
- W2092147712 cites W2093928309 @default.
- W2092147712 cites W2162975974 @default.
- W2092147712 doi "https://doi.org/10.1016/j.eswa.2011.01.019" @default.
- W2092147712 hasPublicationYear "2011" @default.
- W2092147712 type Work @default.
- W2092147712 sameAs 2092147712 @default.
- W2092147712 citedByCount "72" @default.
- W2092147712 countsByYear W20921477122012 @default.
- W2092147712 countsByYear W20921477122013 @default.
- W2092147712 countsByYear W20921477122014 @default.
- W2092147712 countsByYear W20921477122015 @default.
- W2092147712 countsByYear W20921477122016 @default.
- W2092147712 countsByYear W20921477122017 @default.
- W2092147712 countsByYear W20921477122018 @default.
- W2092147712 countsByYear W20921477122019 @default.
- W2092147712 countsByYear W20921477122020 @default.
- W2092147712 countsByYear W20921477122021 @default.
- W2092147712 countsByYear W20921477122022 @default.
- W2092147712 countsByYear W20921477122023 @default.
- W2092147712 crossrefType "journal-article" @default.
- W2092147712 hasAuthorship W2092147712A5031228757 @default.
- W2092147712 hasAuthorship W2092147712A5053060236 @default.
- W2092147712 hasAuthorship W2092147712A5086100690 @default.
- W2092147712 hasConcept C107365816 @default.
- W2092147712 hasConcept C111919701 @default.
- W2092147712 hasConcept C11413529 @default.
- W2092147712 hasConcept C121332964 @default.
- W2092147712 hasConcept C126980161 @default.
- W2092147712 hasConcept C127313418 @default.
- W2092147712 hasConcept C127413603 @default.
- W2092147712 hasConcept C13280743 @default.
- W2092147712 hasConcept C154945302 @default.
- W2092147712 hasConcept C159985019 @default.
- W2092147712 hasConcept C172120300 @default.
- W2092147712 hasConcept C176809094 @default.
- W2092147712 hasConcept C192562407 @default.
- W2092147712 hasConcept C2780957350 @default.
- W2092147712 hasConcept C41008148 @default.
- W2092147712 hasConcept C50644808 @default.
- W2092147712 hasConcept C523214423 @default.
- W2092147712 hasConcept C57879066 @default.
- W2092147712 hasConcept C71039073 @default.
- W2092147712 hasConcept C78519656 @default.
- W2092147712 hasConcept C98045186 @default.
- W2092147712 hasConceptScore W2092147712C107365816 @default.
- W2092147712 hasConceptScore W2092147712C111919701 @default.
- W2092147712 hasConceptScore W2092147712C11413529 @default.
- W2092147712 hasConceptScore W2092147712C121332964 @default.
- W2092147712 hasConceptScore W2092147712C126980161 @default.
- W2092147712 hasConceptScore W2092147712C127313418 @default.
- W2092147712 hasConceptScore W2092147712C127413603 @default.
- W2092147712 hasConceptScore W2092147712C13280743 @default.
- W2092147712 hasConceptScore W2092147712C154945302 @default.
- W2092147712 hasConceptScore W2092147712C159985019 @default.
- W2092147712 hasConceptScore W2092147712C172120300 @default.
- W2092147712 hasConceptScore W2092147712C176809094 @default.
- W2092147712 hasConceptScore W2092147712C192562407 @default.
- W2092147712 hasConceptScore W2092147712C2780957350 @default.
- W2092147712 hasConceptScore W2092147712C41008148 @default.
- W2092147712 hasConceptScore W2092147712C50644808 @default.
- W2092147712 hasConceptScore W2092147712C523214423 @default.
- W2092147712 hasConceptScore W2092147712C57879066 @default.
- W2092147712 hasConceptScore W2092147712C71039073 @default.
- W2092147712 hasConceptScore W2092147712C78519656 @default.
- W2092147712 hasConceptScore W2092147712C98045186 @default.
- W2092147712 hasIssue "7" @default.
- W2092147712 hasLocation W20921477121 @default.