Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092156970> ?p ?o ?g. }
- W2092156970 endingPage "15912" @default.
- W2092156970 startingPage "15908" @default.
- W2092156970 abstract "Nucleolin is a very abundant eukaryotic protein that localizes to the nucleolus, where the rDNA undergoes transcription, replication, and recombination and where rRNA processing occurs. The top (non-template) strand of the rDNA is very guanine-rich and has considerable potential to form structures stabilized by G-G pairing. We have assayed binding of endogenous and recombinant nucleolin to synthetic oligonucleotides in which G-rich regions have formed intermolecular G-G pairs to produce either two-stranded G2 or four-stranded G4 DNA. We report that nucleolin binds G-G-paired DNA with very high affinity; the dissociation constant for interaction with G4 DNA is K D = 1 nm. Two separate domains of nucleolin can interact with G-G-paired DNA, the four RNA binding domains and the C-terminal Arg-Gly-Gly repeats. Both domains bind G4 DNA with high specificity and recognize G4 DNA structure independent of sequence context. The high affinity of the nucleolin/G4 DNA interaction identifies G-G-paired structures as natural binding targets of nucleolin in the nucleolus. The ability of two independent domains of nucleolin to bind G-G-paired structures suggests that nucleolin can function as an architectural factor in rDNA transcription, replication, or recombination. Nucleolin is a very abundant eukaryotic protein that localizes to the nucleolus, where the rDNA undergoes transcription, replication, and recombination and where rRNA processing occurs. The top (non-template) strand of the rDNA is very guanine-rich and has considerable potential to form structures stabilized by G-G pairing. We have assayed binding of endogenous and recombinant nucleolin to synthetic oligonucleotides in which G-rich regions have formed intermolecular G-G pairs to produce either two-stranded G2 or four-stranded G4 DNA. We report that nucleolin binds G-G-paired DNA with very high affinity; the dissociation constant for interaction with G4 DNA is K D = 1 nm. Two separate domains of nucleolin can interact with G-G-paired DNA, the four RNA binding domains and the C-terminal Arg-Gly-Gly repeats. Both domains bind G4 DNA with high specificity and recognize G4 DNA structure independent of sequence context. The high affinity of the nucleolin/G4 DNA interaction identifies G-G-paired structures as natural binding targets of nucleolin in the nucleolus. The ability of two independent domains of nucleolin to bind G-G-paired structures suggests that nucleolin can function as an architectural factor in rDNA transcription, replication, or recombination. Transcription and processing of rRNA occur within a specialized subnuclear compartment, the nucleolus. In cells that are actively transcribing the rDNA, nucleoli appear to be composed of three compartments: the fibrillar center, which contains DNA that is not being transcribed; the dense fibrillar component, where rDNA transcription occurs; and the peripheral granular component, where pre-rRNA processing and pre-ribosome assembly take place (1Puvion-Dutilleul F. Bachellerie J.-P. Puvion E. Chromosoma. 1991; 100: 395-409Crossref PubMed Scopus (127) Google Scholar, 2Puvion-Dutilleul F. Puvion E. Bachellerie J.-P. Chromosoma. 1997; 105: 496-505Crossref PubMed Scopus (49) Google Scholar). In proliferating cells, RNA polymerase I (pol I) 1The abbreviations used are: pol I, polymerase I; RBD, RNA binding domain; MBP, maltose-binding protein; ETS, external transcribed spacer1The abbreviations used are: pol I, polymerase I; RBD, RNA binding domain; MBP, maltose-binding protein; ETS, external transcribed spacer and other components of the transcription complex localize to the dense fibrillar component, whereas molecules essential for rRNA processing, like fibrillarin and the small nucleolar RNAs, localize to the peripheral granular component (for review, see Refs. 3Fakan S. Puvion E. Int. Rev. Cytol. 1980; 65: 225-299Google Scholar, 4Jordan G. Nature. 1987; 329: 489-490Crossref PubMed Scopus (178) Google Scholar, 5Gerbi S.A. Biochem. Cell Biol. 1995; 73: 845-858Crossref PubMed Scopus (41) Google Scholar). The rate at which the rDNA is transcribed in actively dividing cells is remarkable. Electron microscopic analysis shows that during active rDNA transcription in metazoan cells, the spacing between pol I complexes is only 100 base pairs (6Osheim Y. Mougey E.B. Windle J. Anderson M. O'Reilly M. Miller O.L. Beyer A. Sollner-Webb B. J. Cell Biol. 1996; 133: 943-954Crossref PubMed Scopus (26) Google Scholar).One of the most abundant proteins in the nucleoli of vertebrate cells is the highly conserved protein, nucleolin. Mammalian nucleolin is 709 amino acids in length and consists of an unusual grouping of sequence and structural motifs (7Lapeyre B. Bourbon H. Amalric F. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 1472-1476Crossref PubMed Scopus (312) Google Scholar, 8Bourbon H.-M. Lapeyre B. Amalric F. J. Mol. Biol. 1988; 200: 627-638Crossref PubMed Scopus (79) Google Scholar, 9Bourbon H.-M. Amalric F. Gene. 1990; 88: 187-196Crossref PubMed Scopus (31) Google Scholar, 10Srivastava M. McBride O.W. Fleming P.J. Pollard H.B. Burns A.L. J. Biol. Chem. 1990; 265: 14922-14931Abstract Full Text PDF PubMed Google Scholar, 11Srivastava M. Fleming P.J. Pollard H. Burns A.L. FEBS Lett. 1989; 250: 99-105Crossref PubMed Scopus (113) Google Scholar, 12Maridor G. Nigg E.A. Nucleic Acids Res. 1990; 18: 1286Crossref PubMed Scopus (28) Google Scholar, 13Rankin M.L. Heine M.A. Xiao S. LeBlanc M.D. Nelson J.W. DiMario P.J. Nucleic Acids Res. 1993; 21: 169Crossref PubMed Scopus (17) Google Scholar, 14Hanakahi L.A. Dempsey L.A. Li M.-J. Maizels N. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 3605-3610Crossref PubMed Scopus (115) Google Scholar). The N-terminal region of nucleolin houses several long stretches of acidic residues with the potential to function as “acid blobs” in activation of transcription (15Ptashne M. Nature. 1988; 335: 683-689Crossref PubMed Scopus (1167) Google Scholar). The central region of nucleolin contains four RNA binding domains (RBDs; also called RNA recognition motifs or RRMs). RBDs are common among proteins that interact with single-stranded nucleic acids (16Kenan D.J. Query C.C. Keene J.D. Trends Biochem. Sci. 1991; 16: 214-220Abstract Full Text PDF PubMed Scopus (618) Google Scholar, 17Birney E. Kumar S. Krainer A.R. Nucleic Acids Res. 1993; 21: 5803-5816Crossref PubMed Scopus (587) Google Scholar), and the RBDs of nucleolin are believed to mediate interactions of nucleolin with RNA (18Ghisolfi-Nieto L. Joseph G. Puvion-Dutilleul F. Amalric F. Bouvet P. J. Mol. Biol. 1996; 260: 34-53Crossref PubMed Scopus (162) Google Scholar, 19Ginisty H. Amalric F. Bouvet P. EMBO J. 1998; 17: 1476-1486Crossref PubMed Scopus (250) Google Scholar, 20Serin G. Joseph G. Ghisolfi L. Bauzan M. Erard M. Amalric F. Bouvet P. J. Biol. Chem. 1997; 272: 13109-13116Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar, 21Bouvet P. Jain C. Belasco J.B. Amalric F. Erard M. EMBO J. 1997; 16: 5235-5246Crossref PubMed Scopus (35) Google Scholar, 22Bouvet P. Diaz J.-J. Kindbeiter K. Madjar J.-J. Amalric F. J. Biol. Chem. 1998; 273: 19025-19029Abstract Full Text Full Text PDF PubMed Scopus (162) Google Scholar). The C terminus of nucleolin contains nine repeats of the tripeptide motif arginine-glycine-glycine (RGG), in which the arginine residues are dimethylated (23Lischwe M.A. Cook R.G. Ahn Y.S. Yeoman L.C. Busch H. Biochemistry. 1985; 24: 6025-6028Crossref PubMed Scopus (110) Google Scholar, 24Lapeyre B. Amalric F. Ghaffari S.H. Venkatarama Rao S.V. Dumbar T.S. Olson M.O.J. J. Biol. Chem. 1986; 261: 9167-9173Abstract Full Text PDF PubMed Google Scholar).The distribution of nucleolin within the nucleolus is unusual. Whereas proteins like pol I and fibrillarin appear to be restricted to a single compartment of the nucleolus, nucleolin is abundant within both the dense fibrillar component and the granular component (for review, see Ref. 4Jordan G. Nature. 1987; 329: 489-490Crossref PubMed Scopus (178) Google Scholar). The presence of nucleolin in the peripheral granular component is consistent with the participation of nucleolin in rRNA processing and ribosome assembly (19Ginisty H. Amalric F. Bouvet P. EMBO J. 1998; 17: 1476-1486Crossref PubMed Scopus (250) Google Scholar, 20Serin G. Joseph G. Ghisolfi L. Bauzan M. Erard M. Amalric F. Bouvet P. J. Biol. Chem. 1997; 272: 13109-13116Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar, 21Bouvet P. Jain C. Belasco J.B. Amalric F. Erard M. EMBO J. 1997; 16: 5235-5246Crossref PubMed Scopus (35) Google Scholar, 22Bouvet P. Diaz J.-J. Kindbeiter K. Madjar J.-J. Amalric F. J. Biol. Chem. 1998; 273: 19025-19029Abstract Full Text Full Text PDF PubMed Scopus (162) Google Scholar). The fact that nucleolin is abundant within the dense fibrillar component suggests that nucleolin also functions in other processes, including transcription, replication, or recombination of the rDNA. Nonetheless, conserved and specific interactions of nucleolin with the duplex rDNA have not been reported.The rDNA transcription unit includes the regions that template mature 18, 5.8, and 28 S RNAs and external and internal transcribed spacer regions (Fig. 1 A). In all eukaryotes, the entire transcribed region of the rDNA is very rich in the base guanine (34.2% in humans) within the spacers, as well as within the regions that template the mature rRNAs. The G-richness is restricted to a single strand, the non-template strand, and most guanines are within runs that contain three or more consecutive Gs (Fig. 1 B).Single-stranded DNAs that contain runs of three or more consecutive guanine residues readily self-associate in vitro to form structures stabilized by G-G pairing (25Sen D. Gilbert W. Nature. 1988; 334: 364-366Crossref PubMed Scopus (1446) Google Scholar, 26Sen D. Gilbert W. Nature. 1990; 344: 410-414Crossref PubMed Scopus (680) Google Scholar, 27Williamson J.R. Raghuraman M.K. Cech T.R. Cell. 1989; 59: 871-880Abstract Full Text PDF PubMed Scopus (1012) Google Scholar, 28Kang C.-H. Zhang X. Ratliff R. Moyzis R. Rich A. Nature. 1992; 356: 126-131Crossref PubMed Scopus (526) Google Scholar, 29Kim J. Cheong C. Moore P.B. Nature. 1991; 351: 331-332Crossref PubMed Scopus (125) Google Scholar, 30Wang Y. Patel D.J. Biochemistry. 1992; 31: 812-819Google Scholar, 31Laughlan G. Murchie A.I. Norman D.G. Moore M.H. Moody P.C. Lilley D.M. Luisi B. Science. 1994; 265: 520-524Crossref PubMed Scopus (476) Google Scholar). In these structures, guanines interact via Hoogsteen bonding to form planar rings called G quartets (Fig. 2 A), and the G quartets stack upon each other to stabilize higher order structures (Fig. 2 B). That guanine-guanine interactions could occur readily in solution was first established nearly 40 years ago (32Gellert M. Lipsett M.N. Davies D.R. Proc. Natl. Acad. Sci. U. S. A. 1962; 48: 2014-2018Crossref Scopus (1204) Google Scholar). Although G-G-paired DNA has not been directly observed in vivo, G-G-paired structures form rapidly and spontaneouslyin vitro and are very stable once formed. Because of its sequence, the G-rich strand of the rDNA has considerable potential to form G-G-paired structures (Fig. 2 A). Formation of such structures may be stimulated by the unwinding and localized denaturation that accompanies rDNA transcription.Figure 2Formation of G-G-paired DNA. A, top view of G quartet shows four guanine residues forming a planar array stabilized by Hoogsteen bonding. B, G4 DNA and G2 DNA. Stacking of the planar G quartets in four-stranded G4 DNA (left) and the two-stranded hairpin conformation of G2 DNA (right) are shown. C, dimethyl sulfate (DMS) protection verified formation of G4 structures by the ETS-1 oligonucleotide. Brackets denote the G-runs, which are accessible in the single-stranded (ss) ETS-1 oligonucleotide but protected in G4 DNA (G4).View Large Image Figure ViewerDownload Hi-res image Download (PPT)The observations presented above have led us to investigate the interaction of nucleolin with G-G-paired DNA. Here we report that mammalian nucleolin binds tightly and specifically to both four-stranded G4 DNA and two-stranded G2 DNA. The dissociation constant for binding is KD = 1 nm, which represents a remarkably high affinity for interaction of a eukaryotic protein with nucleic acid. Mutational analysis shows that two separable domains of nucleolin can bind G4 DNA, one comprised of the four RBDs (RBD-1,2,3,4) and the other comprised of the C-terminal Arg-Gly-Gly repeats (RGG9). These results suggest that G-G-paired DNA is a natural binding target of nucleolin within the nucleolus. Nucleolin may, therefore, be an architectural factor that functions to organize the G-rich non-template strand of the rDNA during transcription, replication, or recombination.DISCUSSIONWe have shown that the abundant nucleolar protein, nucleolin, binds G-G-paired DNA with very high affinity (KD= 1 nm). Nucleolin can bind to both four-stranded G4 DNA and two-stranded G2 DNA, and nucleolin recognizes G-G-paired structures independent of sequence context. The remarkably high binding affinities suggest that G-G-paired structures are binding targets of nucleolin in vivo. The observation that nucleolin binds G-G-paired structures independent of sequence context shows that this protein will be able to bind G-G-paired structures wherever they might form within the G-rich rDNA.Dynamic Formation of G-G-paired DNA in the NucleolusMost nuclear DNA is double-stranded, and complementary base pairing will normally protect duplex DNA from forming G-G-paired structures. However, duplex DNA becomes transiently single-stranded during three critical and dynamic processes: transcription, replication, and recombination. Cells have developed sophisticated mechanisms to prevent DNA from adopting alternative structures, including a variety of proteins that bind to transiently exposed single-stranded regions. Nonetheless, these mechanisms are not foolproof. For example, there is considerable evidence that triplet repeat expansion results from formation of non-Watson-Crick structures during replication (see Ref.40Gacy A.M. Goellner G.M. Spiro C. Chen X. Gupta G. Bradbury E.M. Dyer R.B. Mikesell M.J. Yao J.Z. Johnson A.J. Richter A. Melancon S.B. McMurray C.T. Mol. Cell. 1998; 1: 583-593Abstract Full Text Full Text PDF PubMed Scopus (148) Google Scholar and references therein).The sequence composition and the strand asymmetry of the rDNA provide it with considerable potential to form G-G-paired structures. The rDNA is G-rich on the top (non-template) strand, not only within the region transcribed into pre-rRNA but also within the spacers (Fig. 1). During active transcription, pol I molecules pack at extremely high density on the rDNA repeats; electron micrographic analysis shows that the spacing between pol I complexes is only 100 base pairs (6Osheim Y. Mougey E.B. Windle J. Anderson M. O'Reilly M. Miller O.L. Beyer A. Sollner-Webb B. J. Cell Biol. 1996; 133: 943-954Crossref PubMed Scopus (26) Google Scholar). Transcription at this level requires that a considerable fraction of the rDNA duplex be denatured. We hypothesize that G-G-paired structures form within the G-rich top strand of the rDNA during transcription or when the duplex is transiently denatured during replication or recombination. G-G-paired structures are very stable once formed (26Sen D. Gilbert W. Nature. 1990; 344: 410-414Crossref PubMed Scopus (680) Google Scholar) and would not be predicted to dissociate spontaneously in vivo.Other experiments provide further support for the notion of a dynamic process of formation and unwinding of G-G-paired structures within the active rDNA. We have recently shown that G-G-paired DNA is the preferred substrate of two eukaryotic helicases, the human BLM helicase, which is deficient in Bloom's syndrome (41Sun H. Karow J.K. Hickson I.D. Maizels N. J. Biol. Chem. 1998; 273: 27587-27592Abstract Full Text Full Text PDF PubMed Scopus (447) Google Scholar), and theSaccharomyces cerevisiae Sgs1p helicase (42Sun H. Bennett R.J. Maizels N. Nucleic Acids Res. 1999; 27: 19078-19084Crossref Scopus (189) Google Scholar). Both these helicases are members of the highly conserved RecQ helicase family. Moreover, S. cerevisiae Sgs1p localizes predominantly to the nucleolus (43Sinclair D.A. Guarente L. Science. 1997; 277: 1313-1316Crossref PubMed Scopus (317) Google Scholar, 44Sinclair D.A. Mills K. Guarente L. Cell. 1997; 91: 1033-1042Abstract Full Text Full Text PDF PubMed Scopus (1162) Google Scholar), where it could function to maintain the structure of the G-rich rDNA. The human functional homolog of Sgs1p in S. cerevisiae appears to be the WRN helicase (deficient in Werner's syndrome). Like Sgs1p, WRN is a RecQ family helicase that is predominantly nucleolar in localization (45Marciniak R.A. Lombard D.B. Johnson F.B. Guarente L. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 6887-6892Crossref PubMed Scopus (179) Google Scholar, 46Gray M.D. Wang L. Youssoufian H. Martin G.M. Oshima J. Exp. Cell Res. 1998; 242: 487-494Crossref PubMed Scopus (124) Google Scholar). Unwinding activity mapped to the conserved helicase core domain of Sgs1p (42Sun H. Bennett R.J. Maizels N. Nucleic Acids Res. 1999; 27: 19078-19084Crossref Scopus (189) Google Scholar), strongly suggesting that preferential activity on G-G-paired substrates may be a general property of helicases in this family. It is therefore very likely that WRN will also prove to be active on G-G-paired rDNA substrates.Nucleolin as an Architectural Factor in rDNA Transcription, Replication, or RecombinationTwo separable domains within nucleolin can bind G-G-paired structures, one comprised of the RBDs 1, 2, 3, and 4 and the other comprised of the C-terminal RGG9domain. The presence of two independent G-G DNA binding domains would contribute to the ability of nucleolin to organize G-G-paired regions. Nucleolin may thus be an architectural factor, in effect forming a scaffolding for the structured G-rich strand. The presence of long acidic runs in the N terminus of nucleolin is consistent with its function in transcription, but nucleolin is a complex molecule with multiple distinct domains, and it may have multiple functions. We have identified nucleolin as one component of a heterodimeric protein, LR1, induced specifically in B cells activated for immunoglobulin heavy chain switch recombination (14Hanakahi L.A. Dempsey L.A. Li M.-J. Maizels N. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 3605-3610Crossref PubMed Scopus (115) Google Scholar, 33Dempsey L.A. Hanakahi L.A. Maizels N. J. Biol. Chem. 1998; 273: 29224-29229Abstract Full Text Full Text PDF PubMed Scopus (78) Google Scholar, 47Dempsey L.A. Sun H. Hanakahi L.A. Maizels N. J. Biol. Chem. 1999; 274: 1066-1071Abstract Full Text Full Text PDF PubMed Scopus (138) Google Scholar). The rDNA repeats must undergo active recombination to maintain homogeneity of this gene family, and one function of nucleolin may be to stimulate or regulate recombination of the rDNA.Nucleolin in the NucleolusNucleolin is abundant in the peripheral granular component of the nucleolus, where rRNA processing occurs, and also in the central dense fibrillar component of the nucleolus, where rDNA transcription occurs (for review, see Ref. 4Jordan G. Nature. 1987; 329: 489-490Crossref PubMed Scopus (178) Google Scholar). Reported functions of nucleolin in rRNA processing (21Bouvet P. Jain C. Belasco J.B. Amalric F. Erard M. EMBO J. 1997; 16: 5235-5246Crossref PubMed Scopus (35) Google Scholar) and ribosome assembly (24Lapeyre B. Amalric F. Ghaffari S.H. Venkatarama Rao S.V. Dumbar T.S. Olson M.O.J. J. Biol. Chem. 1986; 261: 9167-9173Abstract Full Text PDF PubMed Google Scholar) are consistent with its presence in the nucleolar peripheral granular component. Function in rDNA transcription, replication, and/or recombination is consistent with the observed localization of nucleolin within the nucleolar central dense fibrillar component. The N terminus of nucleolin contains long acidic regions of as many as 38 aspartate and glutamate residues in an uninterrupted stretch, which could function as acid blobs (15Ptashne M. Nature. 1988; 335: 683-689Crossref PubMed Scopus (1167) Google Scholar) to activate transcription by pol I. The N terminus of nucleolin also contains sites for the mitosis-specific cdc2 kinase (38Belenguer P. Caizergues-Ferrer M. Labbe J. Doree M. Amalric F. Mol. Cell. Biol. 1990; 10: 3607-3618Crossref PubMed Scopus (122) Google Scholar) and casein kinase II (36Caizergues-Ferrer M. Belenguer P. Lapeyre B. Amalric F. Wallace M.O. Olson M.O.J. Biochemistry. 1987; 26: 7876-7883Crossref PubMed Scopus (126) Google Scholar,37Belenguer P. Baldin V. Mathieu C. Prats H. Bensaid M. Bouche G. Amalric F. Nucleic Acids Res. 1989; 17: 6625-6636Crossref PubMed Scopus (84) Google Scholar). Both of these kinases phosphorylate histone H1, and they could analogously regulate nucleolin in response to cell cycle-dependent controls.Many proteins have been identified which contain RBDs and RGG motifs, but the mutational analysis of nucleolin makes it unlikely that high affinity binding to G-G-paired DNA is a common property of all RBD/RGG proteins. Most RBD-containing proteins contain only two or three RBDs, and deletion of two of the RBDs of nucleolin to produce Nuc-1,2, Nuc-2,3, or Nuc-3,4 greatly diminished binding affinity (Fig. 7). Similarly, whereas many proteins contain RGG motifs, nucleolin is unusual in that it contains nine repeats of the RGG motif, and deletion analysis showed that Nuc-RGG4 does not bind G4 DNA.The broad nucleolar distribution of nucleolin has led to considerable interest regarding its mode of localization within the nucleolus. The two domains of nucleolin that bind G-G-paired DNA (RBD-1,2,3,4 and RGG9) are also essential for nucleolar localization (48Heine M.A. Rankin M.L. DiMario P.J. Mol. Biol. Cell. 1993; 4: 1189-1204Crossref PubMed Scopus (61) Google Scholar, 49Schmidt-Zachermann M.S. Nigg E.A. J. Cell Sci. 1993; 105: 799-806PubMed Google Scholar, 50Créancier L. Prats H. Zanibellato C. Amalric F. Bugler B. Mol. Biol. Cell. 1993; 4: 1239-1250Crossref PubMed Scopus (75) Google Scholar), whereas the N-terminal acidic region is dispensable. The ability to interact with G-G-paired nucleic acids may, therefore, be essential to localization or retention of nucleolin within the nucleolus. Transcription and processing of rRNA occur within a specialized subnuclear compartment, the nucleolus. In cells that are actively transcribing the rDNA, nucleoli appear to be composed of three compartments: the fibrillar center, which contains DNA that is not being transcribed; the dense fibrillar component, where rDNA transcription occurs; and the peripheral granular component, where pre-rRNA processing and pre-ribosome assembly take place (1Puvion-Dutilleul F. Bachellerie J.-P. Puvion E. Chromosoma. 1991; 100: 395-409Crossref PubMed Scopus (127) Google Scholar, 2Puvion-Dutilleul F. Puvion E. Bachellerie J.-P. Chromosoma. 1997; 105: 496-505Crossref PubMed Scopus (49) Google Scholar). In proliferating cells, RNA polymerase I (pol I) 1The abbreviations used are: pol I, polymerase I; RBD, RNA binding domain; MBP, maltose-binding protein; ETS, external transcribed spacer1The abbreviations used are: pol I, polymerase I; RBD, RNA binding domain; MBP, maltose-binding protein; ETS, external transcribed spacer and other components of the transcription complex localize to the dense fibrillar component, whereas molecules essential for rRNA processing, like fibrillarin and the small nucleolar RNAs, localize to the peripheral granular component (for review, see Refs. 3Fakan S. Puvion E. Int. Rev. Cytol. 1980; 65: 225-299Google Scholar, 4Jordan G. Nature. 1987; 329: 489-490Crossref PubMed Scopus (178) Google Scholar, 5Gerbi S.A. Biochem. Cell Biol. 1995; 73: 845-858Crossref PubMed Scopus (41) Google Scholar). The rate at which the rDNA is transcribed in actively dividing cells is remarkable. Electron microscopic analysis shows that during active rDNA transcription in metazoan cells, the spacing between pol I complexes is only 100 base pairs (6Osheim Y. Mougey E.B. Windle J. Anderson M. O'Reilly M. Miller O.L. Beyer A. Sollner-Webb B. J. Cell Biol. 1996; 133: 943-954Crossref PubMed Scopus (26) Google Scholar). One of the most abundant proteins in the nucleoli of vertebrate cells is the highly conserved protein, nucleolin. Mammalian nucleolin is 709 amino acids in length and consists of an unusual grouping of sequence and structural motifs (7Lapeyre B. Bourbon H. Amalric F. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 1472-1476Crossref PubMed Scopus (312) Google Scholar, 8Bourbon H.-M. Lapeyre B. Amalric F. J. Mol. Biol. 1988; 200: 627-638Crossref PubMed Scopus (79) Google Scholar, 9Bourbon H.-M. Amalric F. Gene. 1990; 88: 187-196Crossref PubMed Scopus (31) Google Scholar, 10Srivastava M. McBride O.W. Fleming P.J. Pollard H.B. Burns A.L. J. Biol. Chem. 1990; 265: 14922-14931Abstract Full Text PDF PubMed Google Scholar, 11Srivastava M. Fleming P.J. Pollard H. Burns A.L. FEBS Lett. 1989; 250: 99-105Crossref PubMed Scopus (113) Google Scholar, 12Maridor G. Nigg E.A. Nucleic Acids Res. 1990; 18: 1286Crossref PubMed Scopus (28) Google Scholar, 13Rankin M.L. Heine M.A. Xiao S. LeBlanc M.D. Nelson J.W. DiMario P.J. Nucleic Acids Res. 1993; 21: 169Crossref PubMed Scopus (17) Google Scholar, 14Hanakahi L.A. Dempsey L.A. Li M.-J. Maizels N. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 3605-3610Crossref PubMed Scopus (115) Google Scholar). The N-terminal region of nucleolin houses several long stretches of acidic residues with the potential to function as “acid blobs” in activation of transcription (15Ptashne M. Nature. 1988; 335: 683-689Crossref PubMed Scopus (1167) Google Scholar). The central region of nucleolin contains four RNA binding domains (RBDs; also called RNA recognition motifs or RRMs). RBDs are common among proteins that interact with single-stranded nucleic acids (16Kenan D.J. Query C.C. Keene J.D. Trends Biochem. Sci. 1991; 16: 214-220Abstract Full Text PDF PubMed Scopus (618) Google Scholar, 17Birney E. Kumar S. Krainer A.R. Nucleic Acids Res. 1993; 21: 5803-5816Crossref PubMed Scopus (587) Google Scholar), and the RBDs of nucleolin are believed to mediate interactions of nucleolin with RNA (18Ghisolfi-Nieto L. Joseph G. Puvion-Dutilleul F. Amalric F. Bouvet P. J. Mol. Biol. 1996; 260: 34-53Crossref PubMed Scopus (162) Google Scholar, 19Ginisty H. Amalric F. Bouvet P. EMBO J. 1998; 17: 1476-1486Crossref PubMed Scopus (250) Google Scholar, 20Serin G. Joseph G. Ghisolfi L. Bauzan M. Erard M. Amalric F. Bouvet P. J. Biol. Chem. 1997; 272: 13109-13116Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar, 21Bouvet P. Jain C. Belasco J.B. Amalric F. Erard M. EMBO J. 1997; 16: 5235-5246Crossref PubMed Scopus (35) Google Scholar, 22Bouvet P. Diaz J.-J. Kindbeiter K. Madjar J.-J. Amalric F. J. Biol. Chem. 1998; 273: 19025-19029Abstract Full Text Full Text PDF PubMed Scopus (162) Google Scholar). The C terminus of nucleolin contains nine repeats of the tripeptide motif arginine-glycine-glycine (RGG), in which the arginine residues are dimethylated (23Lischwe M.A. Cook R.G. Ahn Y.S. Yeoman L.C. Busch H. Biochemistry. 1985; 24: 6025-6028Crossref PubMed Scopus (110) Google Scholar, 24Lapeyre B. Amalric F. Ghaffari S.H. Venkatarama Rao S.V. Dumbar T.S. Olson M.O.J. J. Biol. Chem. 1986; 261: 9167-9173Abstract Full Text PDF PubMed Google Scholar). The distribution of nucleolin within the nucleolus is unusual. Whereas proteins like pol I and fibrillarin appear to be restricted to a single compartment of the nucleolus, nucleolin is abundant within both the dense fibrillar component and the granular component (for review, see Ref. 4Jordan G. Nature. 1987; 329: 489-490Crossref PubMed Scopus (178) Google Scholar). The presence of nucleolin in the peripheral granular component is consistent with the participation of nucleolin in rRNA processing and ribosome assembly (19Ginisty H. Amalric F. Bouvet P. EMBO J. 1998; 17: 1476-1486Crossref PubMed Scopus (250) Google Scholar, 20Serin G. Joseph G. Ghisolfi L. Bauzan M. Erard M. Amalric F. Bouvet P. J. Biol. Chem. 1997; 272: 13109-13116Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar, 21Bouvet P. Jain C. Belasco J.B. Amalric F. Erard M. EMBO J. 1997; 16: 5235-5246Crossref PubMed Scopus (35) Google Scholar, 22Bouvet P. Diaz J.-J. Kindbeiter K. Madjar J.-J. Amalric F. J. Biol. Chem. 1998; 273: 19025-19029Abstract Full Text Full Text PDF PubMed Scopus (162) Google Scholar). The fact that nucleolin is abundant within the dense fibrillar component suggests that nucleolin also functions in other processes, including transcription, replication, or recombination of the rDNA. Nonetheless, conserved and specific interactions of nucleolin with the duplex rDNA have not been reported. The rDNA transcription unit includes the regions that template mature 18, 5.8, and 28 S RNAs and external and internal transcribed spacer regions (Fig. 1 A). In all eukaryotes, the entire transcribed region of the rDNA is very rich in the base guanine (34.2% in humans) within the spacers, as well as within the regions that template the mature rRNAs. The G-richness is restricted to a single strand, the non-template strand, and most guanines are within runs that contain three or more consecutive Gs (Fig. 1 B). Single-stranded DNAs that contain runs of three or more consecutive guanine residues readily self-associate in vitro to form structures stabilized by G-G pairing (25Sen D. Gilbert W. Nature. 1988; 334: 364-366Crossref PubMed Scopus (1446) Google Scholar, 26Sen D. Gilbert W. Nature. 1990; 344: 410-414Crossref PubMed Scopus (" @default.
- W2092156970 created "2016-06-24" @default.
- W2092156970 creator A5041141695 @default.
- W2092156970 creator A5081386855 @default.
- W2092156970 creator A5088715864 @default.
- W2092156970 date "1999-05-01" @default.
- W2092156970 modified "2023-10-03" @default.
- W2092156970 title "High Affinity Interactions of Nucleolin with G-G-paired rDNA" @default.
- W2092156970 cites W1508442047 @default.
- W2092156970 cites W1530733681 @default.
- W2092156970 cites W1558516755 @default.
- W2092156970 cites W1566836619 @default.
- W2092156970 cites W1948489073 @default.
- W2092156970 cites W1963578989 @default.
- W2092156970 cites W1972010485 @default.
- W2092156970 cites W1972534928 @default.
- W2092156970 cites W1986282708 @default.
- W2092156970 cites W1989463841 @default.
- W2092156970 cites W1998905553 @default.
- W2092156970 cites W2005649052 @default.
- W2092156970 cites W2007373812 @default.
- W2092156970 cites W2010595848 @default.
- W2092156970 cites W2011428226 @default.
- W2092156970 cites W2011743605 @default.
- W2092156970 cites W2011844193 @default.
- W2092156970 cites W2015924376 @default.
- W2092156970 cites W2018702601 @default.
- W2092156970 cites W2019574228 @default.
- W2092156970 cites W2021959562 @default.
- W2092156970 cites W2024933696 @default.
- W2092156970 cites W2030325101 @default.
- W2092156970 cites W2033777731 @default.
- W2092156970 cites W2035884983 @default.
- W2092156970 cites W2038220637 @default.
- W2092156970 cites W2040847130 @default.
- W2092156970 cites W2058094663 @default.
- W2092156970 cites W2061753858 @default.
- W2092156970 cites W2065464189 @default.
- W2092156970 cites W2066253418 @default.
- W2092156970 cites W2071813277 @default.
- W2092156970 cites W2073722866 @default.
- W2092156970 cites W2076335297 @default.
- W2092156970 cites W2076849957 @default.
- W2092156970 cites W2078030859 @default.
- W2092156970 cites W2083879735 @default.
- W2092156970 cites W2089041372 @default.
- W2092156970 cites W2091876286 @default.
- W2092156970 cites W2094690099 @default.
- W2092156970 cites W2103149303 @default.
- W2092156970 cites W2106111891 @default.
- W2092156970 cites W2106605393 @default.
- W2092156970 cites W2107038927 @default.
- W2092156970 cites W2132714970 @default.
- W2092156970 cites W2161650693 @default.
- W2092156970 cites W2165169748 @default.
- W2092156970 doi "https://doi.org/10.1074/jbc.274.22.15908" @default.
- W2092156970 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10336496" @default.
- W2092156970 hasPublicationYear "1999" @default.
- W2092156970 type Work @default.
- W2092156970 sameAs 2092156970 @default.
- W2092156970 citedByCount "209" @default.
- W2092156970 countsByYear W20921569702012 @default.
- W2092156970 countsByYear W20921569702013 @default.
- W2092156970 countsByYear W20921569702014 @default.
- W2092156970 countsByYear W20921569702015 @default.
- W2092156970 countsByYear W20921569702016 @default.
- W2092156970 countsByYear W20921569702017 @default.
- W2092156970 countsByYear W20921569702018 @default.
- W2092156970 countsByYear W20921569702019 @default.
- W2092156970 countsByYear W20921569702020 @default.
- W2092156970 countsByYear W20921569702021 @default.
- W2092156970 countsByYear W20921569702022 @default.
- W2092156970 countsByYear W20921569702023 @default.
- W2092156970 crossrefType "journal-article" @default.
- W2092156970 hasAuthorship W2092156970A5041141695 @default.
- W2092156970 hasAuthorship W2092156970A5081386855 @default.
- W2092156970 hasAuthorship W2092156970A5088715864 @default.
- W2092156970 hasBestOaLocation W20921569701 @default.
- W2092156970 hasConcept C153911025 @default.
- W2092156970 hasConcept C183873130 @default.
- W2092156970 hasConcept C185592680 @default.
- W2092156970 hasConcept C190062978 @default.
- W2092156970 hasConcept C2776525860 @default.
- W2092156970 hasConcept C54355233 @default.
- W2092156970 hasConcept C70721500 @default.
- W2092156970 hasConcept C86803240 @default.
- W2092156970 hasConceptScore W2092156970C153911025 @default.
- W2092156970 hasConceptScore W2092156970C183873130 @default.
- W2092156970 hasConceptScore W2092156970C185592680 @default.
- W2092156970 hasConceptScore W2092156970C190062978 @default.
- W2092156970 hasConceptScore W2092156970C2776525860 @default.
- W2092156970 hasConceptScore W2092156970C54355233 @default.
- W2092156970 hasConceptScore W2092156970C70721500 @default.
- W2092156970 hasConceptScore W2092156970C86803240 @default.
- W2092156970 hasIssue "22" @default.
- W2092156970 hasLocation W20921569701 @default.
- W2092156970 hasOpenAccess W2092156970 @default.
- W2092156970 hasPrimaryLocation W20921569701 @default.