Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092183909> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2092183909 endingPage "139" @default.
- W2092183909 startingPage "138" @default.
- W2092183909 abstract "Extracorporal membrane oxygenation (ECMO) is an effective first-line support to circulation in patients in refractory cardiogenic shock or cardiac arrest. However, due to its inability to effectively drain the left ventricle (LV), its effectiveness in assisting the heart and promoting myocardial recovery is limited.1Scholz K.H. Schröder T. Hering J.P. et al.Need for active left-ventricular decompressing during percutaneous cardiopulmonary support in cardiac arrest.Cardiology. 1994; 84: 222-230Crossref PubMed Scopus (25) Google Scholar In fact, in a sizeable proportion of ECMO patients, the combination of severely reduced LV function, blood return to the left atrium via the bronchial circulation, and increased after-load from the arterial cannula results in a rise in left atrial and ventricular pressures.2Mégarbane B. Deye N. Baud F.J. Assistance circulatoire périphérique au cours des intoxications aiguës par cardiotropes.Réanimation. 2009; 18: 420-427Crossref Scopus (21) Google Scholar The consequent increase in LV wall stress reduces myocardial perfusion by inducing a persistent compression of the microvascular bed and increases oxygen consumption, leading to chronic ischemia and jeopardizing the chance of myocardial recovery.3Kawashima D. Gojo S. Nishimura T. et al.Left ventricular mechanical support with Impella provides more ventricular unloading in heart failure than extracorporeal membrane oxygenation.ASAIO J. 2011; 57: 169-176Crossref PubMed Scopus (114) Google Scholar However, paracorporeal LV assistance devices (LVAD) instituted through median sternotomy provide optimal LV assistance, but the complexity of central cannulation and post-implantation management limits their widespread adoption. We report a method of minimally invasive LV drainage while the patient is receiving peripheral ECMO support and subsequent staged switch to paracorporeal LVAD without the need for a median sternotomy. This strategy allows transformation of a peripheral circulatory support into an effective myocardial and systemic assistance, with minimal invasiveness and surgical risk. The combination of apical drainage with axillary artery cannulation and the elimination of the venous catheter and the oxygenator from the circuit consents the transformation of a peripheral arteriovenous ECMO in the simplest midterm paracorporeal LVAD. From a technical standpoint, an 8-cm left anterior minithoracotomy is performed in the fifth or sixth intercostal space, depending on the LV shape and volume. The superficial pectoral fascia and the pectoralis major muscle are divided. The pectoralis minor muscle and a portion of the serratus anterior muscle are sectioned. The apex of the patient’s LV is exposed by opening the pericardium anteriorly to the phrenic nerve. An apical cannula is positioned transcutaneously, inserted into the LV after a cross-blade incision, and secured by interrupted mattress sutures. After conventional deairing maneuvers, the cannula is then connected to the venous line of the ECMO circuit using a Y-shaped connector. LV drainage can then be started by draining blood from the LV apex and completely venting the left heart (Figure 1B). After the introduction of the apical cannula in the circuit, the pre-load increases; initially, the apical contribution to the overall return is lower to that of the femoral vein. As the pulmonary congestion ameliorates, the venous return to the left heart rises. The progressive recovery of LV function (facilitated by the effective drainage) further contributes to the increase of flow from the LV cannula, until complete reversal of the initial femoroapical ratio. Placement of a flow probe on the apical return is mandatory to monitor these changes. In the presence of sufficient right ventricular function, the system can be switched from arteriovenous ECMO to LVAD. For this purpose, progressive clamping of the venous line is performed until complete exclusion of the oxygenator and of the femoral venous drainage from the circuit (usually within 1 to 2 hours). In this way, the system is transformed to a paracorporeal apicofemoral LVAD (Figure 1C). Systemic anticoagulation can then be reduced to an activated clotting time of approximately 100 seconds. When a prolonged period of assistance is expected, the axillary artery is substituted to the femoral for the outflow to allow partial mobilization of the patient (Figure 1D). In this case, a composite outflow cannula (0.375-inch polyvinyl chloride armed body connected to a 8-mm Dacron vascular graft) positioned under the fibers of the pectoralis major and anastomosed end-to-side to the artery is used. To avoid a hyper-flow syndrome to the left superior arm, a slight banding of the axillary artery is made distally to the graft anastomosis. The proposed apicoarterial cannulation ensures complete drainage of the LV and provides an effective LV assistance. When the axillary artery is used for the outflow, this strategy transforms a peripheral arteriovenous ECMO into the simplest midterm paracorporeal LVAD. Although objective clinical data are needed to confirm these expectations, the easy of adoption and optimal cost-effectiveness of the described approach may potentially allow the use of ventricular assistance therapy even in primary care centers. A further potential advantage is the possibility of allowing partial mobilization and autonomy of the patient, an element of major relevance in case of medium-term bridge strategy. None of the authors has a financial relationship with a commercial entity that has an interest in the subject of the presented manuscript or other conflicts of interest to disclose." @default.
- W2092183909 created "2016-06-24" @default.
- W2092183909 creator A5025681750 @default.
- W2092183909 creator A5030956368 @default.
- W2092183909 creator A5055244404 @default.
- W2092183909 creator A5063645267 @default.
- W2092183909 date "2013-01-01" @default.
- W2092183909 modified "2023-09-25" @default.
- W2092183909 title "From extracorporeal membrane oxygenation to ventricular assist device oxygenation without sternotomy" @default.
- W2092183909 cites W1986190638 @default.
- W2092183909 cites W2017191080 @default.
- W2092183909 cites W2075051157 @default.
- W2092183909 doi "https://doi.org/10.1016/j.healun.2012.10.003" @default.
- W2092183909 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23260715" @default.
- W2092183909 hasPublicationYear "2013" @default.
- W2092183909 type Work @default.
- W2092183909 sameAs 2092183909 @default.
- W2092183909 citedByCount "20" @default.
- W2092183909 countsByYear W20921839092014 @default.
- W2092183909 countsByYear W20921839092016 @default.
- W2092183909 countsByYear W20921839092017 @default.
- W2092183909 countsByYear W20921839092018 @default.
- W2092183909 countsByYear W20921839092020 @default.
- W2092183909 countsByYear W20921839092021 @default.
- W2092183909 crossrefType "journal-article" @default.
- W2092183909 hasAuthorship W2092183909A5025681750 @default.
- W2092183909 hasAuthorship W2092183909A5030956368 @default.
- W2092183909 hasAuthorship W2092183909A5055244404 @default.
- W2092183909 hasAuthorship W2092183909A5063645267 @default.
- W2092183909 hasBestOaLocation W20921839091 @default.
- W2092183909 hasConcept C126322002 @default.
- W2092183909 hasConcept C164705383 @default.
- W2092183909 hasConcept C2776850375 @default.
- W2092183909 hasConcept C2776858399 @default.
- W2092183909 hasConcept C2778198053 @default.
- W2092183909 hasConcept C2778774980 @default.
- W2092183909 hasConcept C2778921608 @default.
- W2092183909 hasConcept C2780574415 @default.
- W2092183909 hasConcept C500558357 @default.
- W2092183909 hasConcept C70289976 @default.
- W2092183909 hasConcept C71924100 @default.
- W2092183909 hasConceptScore W2092183909C126322002 @default.
- W2092183909 hasConceptScore W2092183909C164705383 @default.
- W2092183909 hasConceptScore W2092183909C2776850375 @default.
- W2092183909 hasConceptScore W2092183909C2776858399 @default.
- W2092183909 hasConceptScore W2092183909C2778198053 @default.
- W2092183909 hasConceptScore W2092183909C2778774980 @default.
- W2092183909 hasConceptScore W2092183909C2778921608 @default.
- W2092183909 hasConceptScore W2092183909C2780574415 @default.
- W2092183909 hasConceptScore W2092183909C500558357 @default.
- W2092183909 hasConceptScore W2092183909C70289976 @default.
- W2092183909 hasConceptScore W2092183909C71924100 @default.
- W2092183909 hasIssue "1" @default.
- W2092183909 hasLocation W20921839091 @default.
- W2092183909 hasLocation W20921839092 @default.
- W2092183909 hasOpenAccess W2092183909 @default.
- W2092183909 hasPrimaryLocation W20921839091 @default.
- W2092183909 hasRelatedWork W2333914885 @default.
- W2092183909 hasRelatedWork W2605021248 @default.
- W2092183909 hasRelatedWork W2757055550 @default.
- W2092183909 hasRelatedWork W2939572105 @default.
- W2092183909 hasRelatedWork W3015862667 @default.
- W2092183909 hasRelatedWork W3047553641 @default.
- W2092183909 hasRelatedWork W3137198982 @default.
- W2092183909 hasRelatedWork W4214761868 @default.
- W2092183909 hasRelatedWork W4251944261 @default.
- W2092183909 hasRelatedWork W4380986577 @default.
- W2092183909 hasVolume "32" @default.
- W2092183909 isParatext "false" @default.
- W2092183909 isRetracted "false" @default.
- W2092183909 magId "2092183909" @default.
- W2092183909 workType "article" @default.