Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092238367> ?p ?o ?g. }
- W2092238367 endingPage "107" @default.
- W2092238367 startingPage "102" @default.
- W2092238367 abstract "Linear and quadratic discriminant analysis and least squares support vector machine (LS-SVM) were used to classify a data set of 326 central nervous system (CNS) drugs as active or inactive CNS agents according to their permeation into the blood–brain barrier. A pool of descriptors was calculated by DRAGON software and nine of them were selected based on Wilk's lambda and classification accuracy and used for classification of drugs in data set. The classification models were validated based on accuracy, sensitivity, specificity, Matthew's correlation coefficient and Cohen's kappa values. The developed LS-SVM model, as the superior model has the accuracy of 96.5% and 96.0%, Matthew's correlation coefficient of 0.930 and 0.920, Cohen's kappa value of 0.963 and 0.917, and area under recursive operating characteristic curve of 0.95 and 0.98 for training and test sets, respectively. The results of this study indicated the applicability of LS-SVM in classification of CNS drugs based on their structural descriptors." @default.
- W2092238367 created "2016-06-24" @default.
- W2092238367 creator A5064100877 @default.
- W2092238367 creator A5067084350 @default.
- W2092238367 date "2012-01-01" @default.
- W2092238367 modified "2023-10-18" @default.
- W2092238367 title "Classification of central nervous system agents by least squares support vector machine based on their structural descriptors: A comparative study" @default.
- W2092238367 cites W1552647955 @default.
- W2092238367 cites W1965935740 @default.
- W2092238367 cites W1970770407 @default.
- W2092238367 cites W1984647595 @default.
- W2092238367 cites W1987202142 @default.
- W2092238367 cites W1988555273 @default.
- W2092238367 cites W1993181868 @default.
- W2092238367 cites W1993966269 @default.
- W2092238367 cites W1997306366 @default.
- W2092238367 cites W1997663259 @default.
- W2092238367 cites W1998035585 @default.
- W2092238367 cites W2001619934 @default.
- W2092238367 cites W2004828907 @default.
- W2092238367 cites W2014892852 @default.
- W2092238367 cites W2017566241 @default.
- W2092238367 cites W2018872680 @default.
- W2092238367 cites W2022876651 @default.
- W2092238367 cites W2029206557 @default.
- W2092238367 cites W2032094685 @default.
- W2092238367 cites W2033917357 @default.
- W2092238367 cites W2043076340 @default.
- W2092238367 cites W2045312970 @default.
- W2092238367 cites W2047985504 @default.
- W2092238367 cites W2049334526 @default.
- W2092238367 cites W2050725278 @default.
- W2092238367 cites W2053154970 @default.
- W2092238367 cites W2062930223 @default.
- W2092238367 cites W2066536516 @default.
- W2092238367 cites W2068042639 @default.
- W2092238367 cites W2069126299 @default.
- W2092238367 cites W2070048441 @default.
- W2092238367 cites W2070121517 @default.
- W2092238367 cites W2075904044 @default.
- W2092238367 cites W2085645854 @default.
- W2092238367 cites W2087836387 @default.
- W2092238367 cites W2096176176 @default.
- W2092238367 cites W2107905689 @default.
- W2092238367 cites W2109553965 @default.
- W2092238367 cites W2115268776 @default.
- W2092238367 cites W2126305917 @default.
- W2092238367 cites W2134344823 @default.
- W2092238367 cites W2137490055 @default.
- W2092238367 cites W2144135270 @default.
- W2092238367 cites W2149511785 @default.
- W2092238367 cites W2151879381 @default.
- W2092238367 cites W2161581535 @default.
- W2092238367 cites W2166269667 @default.
- W2092238367 cites W2168391509 @default.
- W2092238367 cites W2171639300 @default.
- W2092238367 cites W2317034342 @default.
- W2092238367 cites W3175318380 @default.
- W2092238367 cites W93409723 @default.
- W2092238367 doi "https://doi.org/10.1016/j.chemolab.2011.10.003" @default.
- W2092238367 hasPublicationYear "2012" @default.
- W2092238367 type Work @default.
- W2092238367 sameAs 2092238367 @default.
- W2092238367 citedByCount "11" @default.
- W2092238367 countsByYear W20922383672013 @default.
- W2092238367 countsByYear W20922383672014 @default.
- W2092238367 countsByYear W20922383672015 @default.
- W2092238367 countsByYear W20922383672016 @default.
- W2092238367 countsByYear W20922383672017 @default.
- W2092238367 countsByYear W20922383672019 @default.
- W2092238367 crossrefType "journal-article" @default.
- W2092238367 hasAuthorship W2092238367A5064100877 @default.
- W2092238367 hasAuthorship W2092238367A5067084350 @default.
- W2092238367 hasConcept C105795698 @default.
- W2092238367 hasConcept C12267149 @default.
- W2092238367 hasConcept C150077022 @default.
- W2092238367 hasConcept C153180895 @default.
- W2092238367 hasConcept C154945302 @default.
- W2092238367 hasConcept C163864269 @default.
- W2092238367 hasConcept C164085508 @default.
- W2092238367 hasConcept C169903167 @default.
- W2092238367 hasConcept C177264268 @default.
- W2092238367 hasConcept C185429906 @default.
- W2092238367 hasConcept C199360897 @default.
- W2092238367 hasConcept C2524010 @default.
- W2092238367 hasConcept C2778724333 @default.
- W2092238367 hasConcept C2780092901 @default.
- W2092238367 hasConcept C2983524802 @default.
- W2092238367 hasConcept C33923547 @default.
- W2092238367 hasConcept C41008148 @default.
- W2092238367 hasConcept C52620605 @default.
- W2092238367 hasConcept C58489278 @default.
- W2092238367 hasConcept C69738355 @default.
- W2092238367 hasConcept C9936470 @default.
- W2092238367 hasConceptScore W2092238367C105795698 @default.
- W2092238367 hasConceptScore W2092238367C12267149 @default.
- W2092238367 hasConceptScore W2092238367C150077022 @default.
- W2092238367 hasConceptScore W2092238367C153180895 @default.