Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092245813> ?p ?o ?g. }
- W2092245813 abstract "Feature structure information plays an important role for regression and classification tasks. We consider a more generic problem: group lasso problem, where structures over feature space can be represented as a combination of features in a group. These groups can be either overlapped or non-overlapped, which are specified in different structures, e.g., structures over a line, a tree, a graph or even a forest. We propose a new approach to solve this generic group lasso problem, where certain features are selected in a group, and an arbitrary family of subset is allowed. We employ accelerated proximal gradient method to solve this problem, where a key step is solve the associated proximal operator. We propose a fast method to compute the proximal operator, where its convergence is rigorously proved. Experimental results on different structures (e.g., group, tree, graph structures) demonstrate the efficiency and effectiveness of the proposed algorithm." @default.
- W2092245813 created "2016-06-24" @default.
- W2092245813 creator A5018733173 @default.
- W2092245813 creator A5046957909 @default.
- W2092245813 date "2013-12-01" @default.
- W2092245813 modified "2023-10-16" @default.
- W2092245813 title "Efficient Algorithms for Selecting Features with Arbitrary Group Constraints via Group Lasso" @default.
- W2092245813 cites W116893223 @default.
- W2092245813 cites W1497745584 @default.
- W2092245813 cites W1564354676 @default.
- W2092245813 cites W1871180460 @default.
- W2092245813 cites W196398094 @default.
- W2092245813 cites W1970554427 @default.
- W2092245813 cites W2002469984 @default.
- W2092245813 cites W2012384441 @default.
- W2092245813 cites W2033289745 @default.
- W2092245813 cites W2056938357 @default.
- W2092245813 cites W2073856656 @default.
- W2092245813 cites W2099696255 @default.
- W2092245813 cites W2100556411 @default.
- W2092245813 cites W2102241087 @default.
- W2092245813 cites W2108198948 @default.
- W2092245813 cites W2109907994 @default.
- W2092245813 cites W2126918862 @default.
- W2092245813 cites W2130410032 @default.
- W2092245813 cites W2135046866 @default.
- W2092245813 cites W2135327149 @default.
- W2092245813 cites W2138019504 @default.
- W2092245813 cites W2138265962 @default.
- W2092245813 cites W2140262144 @default.
- W2092245813 cites W2140514146 @default.
- W2092245813 cites W2141566872 @default.
- W2092245813 cites W2146482778 @default.
- W2092245813 cites W2146775659 @default.
- W2092245813 cites W2154947819 @default.
- W2092245813 cites W2160450758 @default.
- W2092245813 cites W2164278908 @default.
- W2092245813 cites W2167474603 @default.
- W2092245813 cites W2168745297 @default.
- W2092245813 cites W2170844819 @default.
- W2092245813 cites W2171837816 @default.
- W2092245813 cites W2244252827 @default.
- W2092245813 cites W2296616510 @default.
- W2092245813 cites W2951862640 @default.
- W2092245813 cites W2952402222 @default.
- W2092245813 cites W2964102750 @default.
- W2092245813 cites W33214042 @default.
- W2092245813 doi "https://doi.org/10.1109/icdm.2013.168" @default.
- W2092245813 hasPublicationYear "2013" @default.
- W2092245813 type Work @default.
- W2092245813 sameAs 2092245813 @default.
- W2092245813 citedByCount "10" @default.
- W2092245813 countsByYear W20922458132014 @default.
- W2092245813 countsByYear W20922458132015 @default.
- W2092245813 countsByYear W20922458132016 @default.
- W2092245813 countsByYear W20922458132017 @default.
- W2092245813 countsByYear W20922458132018 @default.
- W2092245813 crossrefType "proceedings-article" @default.
- W2092245813 hasAuthorship W2092245813A5018733173 @default.
- W2092245813 hasAuthorship W2092245813A5046957909 @default.
- W2092245813 hasConcept C104317684 @default.
- W2092245813 hasConcept C113174947 @default.
- W2092245813 hasConcept C11413529 @default.
- W2092245813 hasConcept C114614502 @default.
- W2092245813 hasConcept C132525143 @default.
- W2092245813 hasConcept C138885662 @default.
- W2092245813 hasConcept C15744967 @default.
- W2092245813 hasConcept C158448853 @default.
- W2092245813 hasConcept C162324750 @default.
- W2092245813 hasConcept C163797641 @default.
- W2092245813 hasConcept C17020691 @default.
- W2092245813 hasConcept C178790620 @default.
- W2092245813 hasConcept C185592680 @default.
- W2092245813 hasConcept C197855036 @default.
- W2092245813 hasConcept C26517878 @default.
- W2092245813 hasConcept C2776401178 @default.
- W2092245813 hasConcept C2777303404 @default.
- W2092245813 hasConcept C2781311116 @default.
- W2092245813 hasConcept C2987759526 @default.
- W2092245813 hasConcept C33923547 @default.
- W2092245813 hasConcept C38652104 @default.
- W2092245813 hasConcept C41008148 @default.
- W2092245813 hasConcept C41895202 @default.
- W2092245813 hasConcept C50522688 @default.
- W2092245813 hasConcept C542102704 @default.
- W2092245813 hasConcept C55493867 @default.
- W2092245813 hasConcept C80444323 @default.
- W2092245813 hasConcept C86339819 @default.
- W2092245813 hasConceptScore W2092245813C104317684 @default.
- W2092245813 hasConceptScore W2092245813C113174947 @default.
- W2092245813 hasConceptScore W2092245813C11413529 @default.
- W2092245813 hasConceptScore W2092245813C114614502 @default.
- W2092245813 hasConceptScore W2092245813C132525143 @default.
- W2092245813 hasConceptScore W2092245813C138885662 @default.
- W2092245813 hasConceptScore W2092245813C15744967 @default.
- W2092245813 hasConceptScore W2092245813C158448853 @default.
- W2092245813 hasConceptScore W2092245813C162324750 @default.
- W2092245813 hasConceptScore W2092245813C163797641 @default.
- W2092245813 hasConceptScore W2092245813C17020691 @default.
- W2092245813 hasConceptScore W2092245813C178790620 @default.