Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092247098> ?p ?o ?g. }
- W2092247098 endingPage "349" @default.
- W2092247098 startingPage "330" @default.
- W2092247098 abstract "Abstract Slip localization is widely observed in metallic polycrystals after tensile deformation, cyclic deformation (persistent slip bands) or pre-irradiation followed by tensile deformation (channels). Such strong deformation localized in thin slip bands induces local stress concentrations in the quasi-elastic matrix around, at the intersections between slip bands and grain boundaries where microcracks are often observed. Since the work of Stroh, such stress fields have been modeled using the dislocation pile-up theory which leads to stress singularities similar to the LEFM ones. The Griffith criterion has then been widely applied, leading usually to strong underestimations of the macroscopic stress for microcrack nucleation. In fact, slip band thickness is finite: 50–1000 nm depending on material, temperature and loading conditions. Then, many slip planes are plastically activated through the thickness. Stress fields have probably been overestimated using the pile-up theory which assumes that all dislocations are located on the same atomic plane. To evaluate more realistic stress fields, crystalline finite element (FE) computations are carried out using microstructure inputs (slip band aspect ratio and spacing). Slip bands (low critical resolved shear stress) are embedded in an elastic matrix. The following results are obtained concerning grain boundary normal stress fields: – strong influence of slip band thickness close to the slip band corner, which is not accounted for by the pile-up theory. But far away, the thickness has a negligible effect and the predicted stress fields are close to the one predicted by the pile-up theory, – analytical formulae are deduced from the numerous FE computation results which allows the prediction of surface/bulk slips as well as grain boundary stress fields. Slip band plasticity parameters, slip band length and thickness, Schmid factor and remote stress are taken into account. The dependence with respect to the various parameters can be understood in the framework of matching expansions usually applied to cracks with V notches of finite thickness, – as the exponent of the GB stress close-field is lower than the pile-up or crack one, that is 0.5, the Griffith criterion may not be used for GB microcrack prediction in case of finite thickness. That is why finite crack fracture mechanics is used together with both energy and stress criteria, – the pile-up theory leads to large underestimation of the critical remote stress leading to GB microcrack nucleation measured in the case of pre-irradiated austenitic stainless steels subjected to tensile loading in inert environment, probably because of the overestimation of the local GB stress field. And the critical remote stress computed using the proposed modeling of slip bands of finite thickness is much closer to the experimental values." @default.
- W2092247098 created "2016-06-24" @default.
- W2092247098 creator A5047900426 @default.
- W2092247098 creator A5081166441 @default.
- W2092247098 date "2013-09-01" @default.
- W2092247098 modified "2023-09-23" @default.
- W2092247098 title "Influence of plastic slip localization on grain boundary stress fields and microcrack nucleation" @default.
- W2092247098 cites W177018731 @default.
- W2092247098 cites W1965762474 @default.
- W2092247098 cites W1966029163 @default.
- W2092247098 cites W1973658587 @default.
- W2092247098 cites W1976594271 @default.
- W2092247098 cites W1979763166 @default.
- W2092247098 cites W1982716343 @default.
- W2092247098 cites W1983673057 @default.
- W2092247098 cites W1984628307 @default.
- W2092247098 cites W1986652094 @default.
- W2092247098 cites W1992158537 @default.
- W2092247098 cites W1993409909 @default.
- W2092247098 cites W1999554851 @default.
- W2092247098 cites W2000207939 @default.
- W2092247098 cites W2000376589 @default.
- W2092247098 cites W2001005476 @default.
- W2092247098 cites W2005352100 @default.
- W2092247098 cites W2008657720 @default.
- W2092247098 cites W2010134385 @default.
- W2092247098 cites W2011768908 @default.
- W2092247098 cites W2012301517 @default.
- W2092247098 cites W2019742281 @default.
- W2092247098 cites W2025495981 @default.
- W2092247098 cites W2029196789 @default.
- W2092247098 cites W2032904495 @default.
- W2092247098 cites W2035151269 @default.
- W2092247098 cites W2037613706 @default.
- W2092247098 cites W2038516268 @default.
- W2092247098 cites W2041890430 @default.
- W2092247098 cites W2046347326 @default.
- W2092247098 cites W2047297703 @default.
- W2092247098 cites W2048056988 @default.
- W2092247098 cites W2048859086 @default.
- W2092247098 cites W2048920792 @default.
- W2092247098 cites W2050549581 @default.
- W2092247098 cites W2052340122 @default.
- W2092247098 cites W2055278125 @default.
- W2092247098 cites W2056756615 @default.
- W2092247098 cites W2058394400 @default.
- W2092247098 cites W2059529884 @default.
- W2092247098 cites W2061762240 @default.
- W2092247098 cites W2062713851 @default.
- W2092247098 cites W2063754173 @default.
- W2092247098 cites W2067002280 @default.
- W2092247098 cites W2083580247 @default.
- W2092247098 cites W2084754215 @default.
- W2092247098 cites W2086261551 @default.
- W2092247098 cites W2089329226 @default.
- W2092247098 cites W2096105657 @default.
- W2092247098 cites W2103682880 @default.
- W2092247098 cites W2104107546 @default.
- W2092247098 cites W2106121023 @default.
- W2092247098 cites W2117868972 @default.
- W2092247098 cites W2123611229 @default.
- W2092247098 cites W2125989078 @default.
- W2092247098 cites W2153602309 @default.
- W2092247098 cites W2154973081 @default.
- W2092247098 cites W2197717057 @default.
- W2092247098 cites W3023454010 @default.
- W2092247098 doi "https://doi.org/10.1016/j.engfracmech.2013.04.019" @default.
- W2092247098 hasPublicationYear "2013" @default.
- W2092247098 type Work @default.
- W2092247098 sameAs 2092247098 @default.
- W2092247098 citedByCount "18" @default.
- W2092247098 countsByYear W20922470982013 @default.
- W2092247098 countsByYear W20922470982014 @default.
- W2092247098 countsByYear W20922470982015 @default.
- W2092247098 countsByYear W20922470982016 @default.
- W2092247098 countsByYear W20922470982017 @default.
- W2092247098 countsByYear W20922470982019 @default.
- W2092247098 countsByYear W20922470982020 @default.
- W2092247098 countsByYear W20922470982021 @default.
- W2092247098 countsByYear W20922470982022 @default.
- W2092247098 countsByYear W20922470982023 @default.
- W2092247098 crossrefType "journal-article" @default.
- W2092247098 hasAuthorship W2092247098A5047900426 @default.
- W2092247098 hasAuthorship W2092247098A5081166441 @default.
- W2092247098 hasConcept C121332964 @default.
- W2092247098 hasConcept C127413603 @default.
- W2092247098 hasConcept C138885662 @default.
- W2092247098 hasConcept C159122135 @default.
- W2092247098 hasConcept C159985019 @default.
- W2092247098 hasConcept C192562407 @default.
- W2092247098 hasConcept C195268267 @default.
- W2092247098 hasConcept C21036866 @default.
- W2092247098 hasConcept C256373 @default.
- W2092247098 hasConcept C41895202 @default.
- W2092247098 hasConcept C47908070 @default.
- W2092247098 hasConcept C57879066 @default.
- W2092247098 hasConcept C61048295 @default.
- W2092247098 hasConcept C66938386 @default.