Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092249009> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2092249009 abstract "Owing to its size independence in the so-called near-continuum vanishingly small Knudsen number regime (Kn<<1) , thermophoretic particle motion occurring in an otherwise quiescent gas under the influence of a temperature gradient is here interpreted as representing the motion of a tracer, namely, an effectively point-size test particle monitoring the local velocity of the undisturbed, particle-free, compressible gas continuum through space. Compressibility refers here not to the usual effect of pressure on the gas's mass density rho but rather to the effect thereon of temperature. Our unorthodox continuum interpretation of thermophoresis differs from the usual one, which regards the existence of thermophoretic forces in gases as a strictly noncontinuum phenomenon, involving thermal stress-induced Maxwell slip (thermal creep) of the gas's mass velocity vm at the surface of the particle, with vm denoting the velocity appearing in the continuity equation expressing the law of conservation of mass. Explicitly, instead of regarding the thermally animated particle as moving through the gas, we regard the particle (in its hypothesized role as a tracer of the undisturbed, particle-free, fluid motion) as moving with the gas, through space; that is, the particle is viewed as simply being entrained in the flowing gas, which, as a result of an externally applied temperature gradient, was already in motion prior to the tracer's introduction into the fluid--albeit not mass motion (which is, in fact, identically zero) but rather volume motion. This tracer-particle interpretation of experimental thermophoretic particle velocity measurements raises fundamental issues in regard to the universally accepted Newtonian rheological law constitutively specifying the viscous or deviatoric stress T as being proportional to the (symmetrized, traceless) fluid velocity gradient inverted Deltav , with v identified as being the fluid's mass velocity vm . Rather, it is argued in the case of compressible fluids, including liquids, that v should, instead, be chosen as the fluid's volume flux density or current density nv , the latter being formally equivalent to the fluid's volume velocity vv , which differs from vm except in the case of incompressible fluids. Apart from this strictly constitutive issue in regard to T , it is further argued that the fluid's tracer or Lagrangian velocity vl:=(deltax/deltat) (x0) along the fluid's spatiotemporal trajectory x=x (x0,t) is equal to vv, rather than to vm. This too is contrary to the heretofore unquestioned supposition that the conceptually distinct fluid velocities vl and vm are not only equal but are, in fact, synonymous. To the extent that vl not equal vm in the nonisothermal fluid case, an optical dye- or photochromic-type experiment (each of the latter two experiments presumably serving to measure vm) will record a different velocity than would a comparable tracer particle velocity measurement, one that measures vl ." @default.
- W2092249009 created "2016-06-24" @default.
- W2092249009 creator A5013768472 @default.
- W2092249009 date "2004-12-06" @default.
- W2092249009 modified "2023-09-23" @default.
- W2092249009 title "Is the tracer velocity of a fluid continuum equal to its mass velocity?" @default.
- W2092249009 cites W146902109 @default.
- W2092249009 cites W1967284089 @default.
- W2092249009 cites W1968807612 @default.
- W2092249009 cites W1969287097 @default.
- W2092249009 cites W1988138122 @default.
- W2092249009 cites W1990010299 @default.
- W2092249009 cites W2005596931 @default.
- W2092249009 cites W2009868517 @default.
- W2092249009 cites W2011362016 @default.
- W2092249009 cites W2038869819 @default.
- W2092249009 cites W2056706689 @default.
- W2092249009 cites W2060828070 @default.
- W2092249009 cites W2088471189 @default.
- W2092249009 cites W2089977487 @default.
- W2092249009 cites W2134066908 @default.
- W2092249009 cites W2155241578 @default.
- W2092249009 cites W2155532339 @default.
- W2092249009 cites W3102905031 @default.
- W2092249009 cites W4214640307 @default.
- W2092249009 cites W4236968499 @default.
- W2092249009 cites W4236974991 @default.
- W2092249009 cites W4251721710 @default.
- W2092249009 cites W4252293059 @default.
- W2092249009 doi "https://doi.org/10.1103/physreve.70.061201" @default.
- W2092249009 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15697343" @default.
- W2092249009 hasPublicationYear "2004" @default.
- W2092249009 type Work @default.
- W2092249009 sameAs 2092249009 @default.
- W2092249009 citedByCount "50" @default.
- W2092249009 countsByYear W20922490092012 @default.
- W2092249009 countsByYear W20922490092013 @default.
- W2092249009 countsByYear W20922490092014 @default.
- W2092249009 countsByYear W20922490092016 @default.
- W2092249009 countsByYear W20922490092018 @default.
- W2092249009 countsByYear W20922490092019 @default.
- W2092249009 countsByYear W20922490092020 @default.
- W2092249009 countsByYear W20922490092021 @default.
- W2092249009 countsByYear W20922490092022 @default.
- W2092249009 crossrefType "journal-article" @default.
- W2092249009 hasAuthorship W2092249009A5013768472 @default.
- W2092249009 hasConcept C111368507 @default.
- W2092249009 hasConcept C121332964 @default.
- W2092249009 hasConcept C127313418 @default.
- W2092249009 hasConcept C15401063 @default.
- W2092249009 hasConcept C166693061 @default.
- W2092249009 hasConcept C175789628 @default.
- W2092249009 hasConcept C185592680 @default.
- W2092249009 hasConcept C21946209 @default.
- W2092249009 hasConcept C2778517922 @default.
- W2092249009 hasConcept C35515768 @default.
- W2092249009 hasConcept C38349280 @default.
- W2092249009 hasConcept C50517652 @default.
- W2092249009 hasConcept C57879066 @default.
- W2092249009 hasConcept C74650414 @default.
- W2092249009 hasConcept C84655787 @default.
- W2092249009 hasConceptScore W2092249009C111368507 @default.
- W2092249009 hasConceptScore W2092249009C121332964 @default.
- W2092249009 hasConceptScore W2092249009C127313418 @default.
- W2092249009 hasConceptScore W2092249009C15401063 @default.
- W2092249009 hasConceptScore W2092249009C166693061 @default.
- W2092249009 hasConceptScore W2092249009C175789628 @default.
- W2092249009 hasConceptScore W2092249009C185592680 @default.
- W2092249009 hasConceptScore W2092249009C21946209 @default.
- W2092249009 hasConceptScore W2092249009C2778517922 @default.
- W2092249009 hasConceptScore W2092249009C35515768 @default.
- W2092249009 hasConceptScore W2092249009C38349280 @default.
- W2092249009 hasConceptScore W2092249009C50517652 @default.
- W2092249009 hasConceptScore W2092249009C57879066 @default.
- W2092249009 hasConceptScore W2092249009C74650414 @default.
- W2092249009 hasConceptScore W2092249009C84655787 @default.
- W2092249009 hasIssue "6" @default.
- W2092249009 hasLocation W20922490091 @default.
- W2092249009 hasLocation W20922490092 @default.
- W2092249009 hasOpenAccess W2092249009 @default.
- W2092249009 hasPrimaryLocation W20922490091 @default.
- W2092249009 hasRelatedWork W145466378 @default.
- W2092249009 hasRelatedWork W1988320018 @default.
- W2092249009 hasRelatedWork W2017043441 @default.
- W2092249009 hasRelatedWork W2058547706 @default.
- W2092249009 hasRelatedWork W2076509234 @default.
- W2092249009 hasRelatedWork W2091803675 @default.
- W2092249009 hasRelatedWork W4220825551 @default.
- W2092249009 hasRelatedWork W4293543388 @default.
- W2092249009 hasRelatedWork W4296918772 @default.
- W2092249009 hasRelatedWork W4312506581 @default.
- W2092249009 hasVolume "70" @default.
- W2092249009 isParatext "false" @default.
- W2092249009 isRetracted "false" @default.
- W2092249009 magId "2092249009" @default.
- W2092249009 workType "article" @default.