Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092249054> ?p ?o ?g. }
- W2092249054 endingPage "7612" @default.
- W2092249054 startingPage "7606" @default.
- W2092249054 abstract "Metabolomics is the study of metabolic changes in biological systems and provides the small molecule fingerprints related to the disease. Extracting biomedical information from large metabolomics data sets by multivariate data analysis is of considerable complexity. Therefore, more efficient and optimizing metabolomics data processing technologies are needed to improve mass spectrometry applications in biomarker discovery. Here, we report the findings of urine metabolomic investigation of hepatitis C virus (HCV) patients by high-throughput ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) coupled with pattern recognition methods (principal component analysis, partial least-squares, and OPLS-DA) and network pharmacology. A total of 20 urinary differential metabolites (13 upregulated and 7 downregulated) were identified and contributed to HCV progress, involve several key metabolic pathways such as taurine and hypotaurine metabolism, glycine, serine and threonine metabolism, histidine metabolism, arginine and proline metabolism, and so forth. Metabolites identified through metabolic profiling may facilitate the development of more accurate marker algorithms to better monitor disease progression. Network analysis validated close contact between these metabolites and implied the importance of the metabolic pathways. Mapping altered metabolites to KEGG pathways identified alterations in a variety of biological processes mediated through complex networks. These findings may be promising to yield a valuable and noninvasive tool that insights into the pathophysiology of HCV and to advance the early diagnosis and monitor the progression of disease. Overall, this investigation illustrates the power of the UPLC-MS platform combined with the pattern recognition and network analysis methods that can engender new insights into HCV pathobiology." @default.
- W2092249054 created "2016-06-24" @default.
- W2092249054 creator A5006627718 @default.
- W2092249054 creator A5012493900 @default.
- W2092249054 creator A5017998243 @default.
- W2092249054 creator A5028774110 @default.
- W2092249054 creator A5030670609 @default.
- W2092249054 creator A5037233119 @default.
- W2092249054 creator A5053957639 @default.
- W2092249054 creator A5058400625 @default.
- W2092249054 creator A5071941735 @default.
- W2092249054 date "2013-07-25" @default.
- W2092249054 modified "2023-10-02" @default.
- W2092249054 title "Ultraperformance Liquid Chromatography–Mass Spectrometry Based Comprehensive Metabolomics Combined with Pattern Recognition and Network Analysis Methods for Characterization of Metabolites and Metabolic Pathways from Biological Data Sets" @default.
- W2092249054 cites W1490331581 @default.
- W2092249054 cites W1965501701 @default.
- W2092249054 cites W1967075823 @default.
- W2092249054 cites W1969082909 @default.
- W2092249054 cites W1969889522 @default.
- W2092249054 cites W1974227868 @default.
- W2092249054 cites W1975115082 @default.
- W2092249054 cites W1980952928 @default.
- W2092249054 cites W1984489032 @default.
- W2092249054 cites W1986487051 @default.
- W2092249054 cites W2008579449 @default.
- W2092249054 cites W2011538629 @default.
- W2092249054 cites W2013036395 @default.
- W2092249054 cites W2014738323 @default.
- W2092249054 cites W2033320345 @default.
- W2092249054 cites W2036798783 @default.
- W2092249054 cites W2044774776 @default.
- W2092249054 cites W2062222093 @default.
- W2092249054 cites W2063957761 @default.
- W2092249054 cites W2072187355 @default.
- W2092249054 cites W2080755591 @default.
- W2092249054 cites W2081302850 @default.
- W2092249054 cites W2082425281 @default.
- W2092249054 cites W2086237123 @default.
- W2092249054 cites W2090219260 @default.
- W2092249054 cites W2094049581 @default.
- W2092249054 cites W2109235725 @default.
- W2092249054 cites W2132597560 @default.
- W2092249054 cites W2167660970 @default.
- W2092249054 cites W2320778464 @default.
- W2092249054 cites W4240066218 @default.
- W2092249054 doi "https://doi.org/10.1021/ac401793d" @default.
- W2092249054 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23845028" @default.
- W2092249054 hasPublicationYear "2013" @default.
- W2092249054 type Work @default.
- W2092249054 sameAs 2092249054 @default.
- W2092249054 citedByCount "95" @default.
- W2092249054 countsByYear W20922490542013 @default.
- W2092249054 countsByYear W20922490542014 @default.
- W2092249054 countsByYear W20922490542015 @default.
- W2092249054 countsByYear W20922490542016 @default.
- W2092249054 countsByYear W20922490542017 @default.
- W2092249054 countsByYear W20922490542018 @default.
- W2092249054 countsByYear W20922490542019 @default.
- W2092249054 countsByYear W20922490542020 @default.
- W2092249054 countsByYear W20922490542021 @default.
- W2092249054 countsByYear W20922490542022 @default.
- W2092249054 countsByYear W20922490542023 @default.
- W2092249054 crossrefType "journal-article" @default.
- W2092249054 hasAuthorship W2092249054A5006627718 @default.
- W2092249054 hasAuthorship W2092249054A5012493900 @default.
- W2092249054 hasAuthorship W2092249054A5017998243 @default.
- W2092249054 hasAuthorship W2092249054A5028774110 @default.
- W2092249054 hasAuthorship W2092249054A5030670609 @default.
- W2092249054 hasAuthorship W2092249054A5037233119 @default.
- W2092249054 hasAuthorship W2092249054A5053957639 @default.
- W2092249054 hasAuthorship W2092249054A5058400625 @default.
- W2092249054 hasAuthorship W2092249054A5071941735 @default.
- W2092249054 hasConcept C101810790 @default.
- W2092249054 hasConcept C104317684 @default.
- W2092249054 hasConcept C124535831 @default.
- W2092249054 hasConcept C135870905 @default.
- W2092249054 hasConcept C150194340 @default.
- W2092249054 hasConcept C152724338 @default.
- W2092249054 hasConcept C162317418 @default.
- W2092249054 hasConcept C185592680 @default.
- W2092249054 hasConcept C192989942 @default.
- W2092249054 hasConcept C21565614 @default.
- W2092249054 hasConcept C2776853492 @default.
- W2092249054 hasConcept C2779701627 @default.
- W2092249054 hasConcept C43617362 @default.
- W2092249054 hasConcept C46111723 @default.
- W2092249054 hasConcept C515207424 @default.
- W2092249054 hasConcept C55493867 @default.
- W2092249054 hasConcept C62231903 @default.
- W2092249054 hasConcept C70721500 @default.
- W2092249054 hasConcept C86803240 @default.
- W2092249054 hasConceptScore W2092249054C101810790 @default.
- W2092249054 hasConceptScore W2092249054C104317684 @default.
- W2092249054 hasConceptScore W2092249054C124535831 @default.
- W2092249054 hasConceptScore W2092249054C135870905 @default.
- W2092249054 hasConceptScore W2092249054C150194340 @default.
- W2092249054 hasConceptScore W2092249054C152724338 @default.
- W2092249054 hasConceptScore W2092249054C162317418 @default.