Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092326028> ?p ?o ?g. }
- W2092326028 endingPage "208" @default.
- W2092326028 startingPage "193" @default.
- W2092326028 abstract "Grain-scale monitoring of fluvial morphology is important for the evaluation of river system dynamics. Significant progress in remote sensing and computer performance allows rapid high-resolution data acquisition, however, applications in fluvial environments remain challenging. Even in a controlled environment, such as a laboratory, the extensive acquisition workflow is prone to the propagation of errors in digital elevation models (DEMs). This is valid for both of the common surface recording techniques: digital stereo photogrammetry and terrestrial laser scanning (TLS). The optimisation of the acquisition process, an effective way to reduce the occurrence of errors, is generally limited by the use of commercial software. Therefore, the removal of evident blunders during post processing is regarded as standard practice, although this may introduce new errors. This paper presents a detailed evaluation of a digital stereo-photogrammetric workflow developed for fluvial hydraulic applications. The introduced workflow is user-friendly and can be adapted to various close-range measurements: imagery is acquired with two Nikon D5100 cameras and processed using non-proprietary “on-the-job” calibration and dense scanline-based stereo matching algorithms. Novel ground truth evaluation studies were designed to identify the DEM errors, which resulted from a combination of calibration errors, inaccurate image rectifications and stereo-matching errors. To ensure optimum DEM quality, we show that systematic DEM errors must be minimised by ensuring a good distribution of control points throughout the image format during calibration. DEM quality is then largely dependent on the imagery utilised. We evaluated the open access multi-scale Retinex algorithm to facilitate the stereo matching, and quantified its influence on DEM quality. Occlusions, inherent to any roughness element, are still a major limiting factor to DEM accuracy. We show that a careful selection of the camera-to-object and baseline distance reduces errors in occluded areas and that realistic ground truths help to quantify those errors." @default.
- W2092326028 created "2016-06-24" @default.
- W2092326028 creator A5006037161 @default.
- W2092326028 creator A5028087208 @default.
- W2092326028 creator A5047114006 @default.
- W2092326028 creator A5061557713 @default.
- W2092326028 creator A5085108897 @default.
- W2092326028 date "2015-03-01" @default.
- W2092326028 modified "2023-10-12" @default.
- W2092326028 title "Digital stereo photogrammetry for grain-scale monitoring of fluvial surfaces: Error evaluation and workflow optimisation" @default.
- W2092326028 cites W1525699088 @default.
- W2092326028 cites W1636709030 @default.
- W2092326028 cites W1965163908 @default.
- W2092326028 cites W1971910150 @default.
- W2092326028 cites W1976275430 @default.
- W2092326028 cites W1977272108 @default.
- W2092326028 cites W1984998341 @default.
- W2092326028 cites W1992848128 @default.
- W2092326028 cites W1996679507 @default.
- W2092326028 cites W1999834053 @default.
- W2092326028 cites W2008819360 @default.
- W2092326028 cites W2011738126 @default.
- W2092326028 cites W2022367031 @default.
- W2092326028 cites W2027029179 @default.
- W2092326028 cites W2027254180 @default.
- W2092326028 cites W2029783666 @default.
- W2092326028 cites W2043982882 @default.
- W2092326028 cites W2055140107 @default.
- W2092326028 cites W2060488209 @default.
- W2092326028 cites W2063712217 @default.
- W2092326028 cites W2072379878 @default.
- W2092326028 cites W2074281625 @default.
- W2092326028 cites W2075614191 @default.
- W2092326028 cites W2076299044 @default.
- W2092326028 cites W2077243966 @default.
- W2092326028 cites W2083164527 @default.
- W2092326028 cites W2083770652 @default.
- W2092326028 cites W2086199220 @default.
- W2092326028 cites W2087424916 @default.
- W2092326028 cites W2095614026 @default.
- W2092326028 cites W2106022616 @default.
- W2092326028 cites W2136588093 @default.
- W2092326028 cites W2140031545 @default.
- W2092326028 cites W2143697091 @default.
- W2092326028 cites W2146086273 @default.
- W2092326028 cites W2150721269 @default.
- W2092326028 cites W2151500411 @default.
- W2092326028 cites W2157555751 @default.
- W2092326028 cites W2157574636 @default.
- W2092326028 cites W2161103267 @default.
- W2092326028 cites W349468749 @default.
- W2092326028 cites W4236020996 @default.
- W2092326028 cites W76695563 @default.
- W2092326028 doi "https://doi.org/10.1016/j.isprsjprs.2014.12.019" @default.
- W2092326028 hasPublicationYear "2015" @default.
- W2092326028 type Work @default.
- W2092326028 sameAs 2092326028 @default.
- W2092326028 citedByCount "31" @default.
- W2092326028 countsByYear W20923260282015 @default.
- W2092326028 countsByYear W20923260282016 @default.
- W2092326028 countsByYear W20923260282017 @default.
- W2092326028 countsByYear W20923260282018 @default.
- W2092326028 countsByYear W20923260282019 @default.
- W2092326028 countsByYear W20923260282020 @default.
- W2092326028 countsByYear W20923260282021 @default.
- W2092326028 countsByYear W20923260282022 @default.
- W2092326028 countsByYear W20923260282023 @default.
- W2092326028 crossrefType "journal-article" @default.
- W2092326028 hasAuthorship W2092326028A5006037161 @default.
- W2092326028 hasAuthorship W2092326028A5028087208 @default.
- W2092326028 hasAuthorship W2092326028A5047114006 @default.
- W2092326028 hasAuthorship W2092326028A5061557713 @default.
- W2092326028 hasAuthorship W2092326028A5085108897 @default.
- W2092326028 hasBestOaLocation W20923260282 @default.
- W2092326028 hasConcept C105795698 @default.
- W2092326028 hasConcept C111919701 @default.
- W2092326028 hasConcept C117455697 @default.
- W2092326028 hasConcept C127313418 @default.
- W2092326028 hasConcept C146849305 @default.
- W2092326028 hasConcept C154945302 @default.
- W2092326028 hasConcept C165838908 @default.
- W2092326028 hasConcept C177212765 @default.
- W2092326028 hasConcept C181843262 @default.
- W2092326028 hasConcept C199360897 @default.
- W2092326028 hasConcept C205649164 @default.
- W2092326028 hasConcept C2777904410 @default.
- W2092326028 hasConcept C2778755073 @default.
- W2092326028 hasConcept C31972630 @default.
- W2092326028 hasConcept C33923547 @default.
- W2092326028 hasConcept C41008148 @default.
- W2092326028 hasConcept C58640448 @default.
- W2092326028 hasConcept C62649853 @default.
- W2092326028 hasConcept C77088390 @default.
- W2092326028 hasConcept C98045186 @default.
- W2092326028 hasConceptScore W2092326028C105795698 @default.
- W2092326028 hasConceptScore W2092326028C111919701 @default.
- W2092326028 hasConceptScore W2092326028C117455697 @default.
- W2092326028 hasConceptScore W2092326028C127313418 @default.