Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092392334> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2092392334 endingPage "3196" @default.
- W2092392334 startingPage "3175" @default.
- W2092392334 abstract "To each category C of modules of finite length over a complex simple Lie algebra g , closed under tensoring with finite dimensional modules, we associate and study a category AFF ( C ) κ of smooth modules (in the sense of Kazhdan and Lusztig [D. Kazhdan, G. Lusztig, Tensor structures arising from affine Lie algebras, I, J. Amer. Math. Soc. 6 (1993) 905–947]) of finite length over the corresponding affine Kac–Moody algebra in the case of central charge less than the critical level. Equivalent characterizations of these categories are obtained in the spirit of the works of Kazhdan and Lusztig [D. Kazhdan, G. Lusztig, Tensor structures arising from affine Lie algebras, I, J. Amer. Math. Soc. 6 (1993) 905–947] and Lian and Zuckerman [B.H. Lian, G.J. Zuckerman, BRST cohomology and noncompact coset models, in: Proceedings of the XXth International Conference on Differential Geometric methods in Theoretical Physics, New York, 1991, 1992, pp. 849–865; B.H. Lian, G.J. Zuckerman, An application of infinite dimensional Lie theory to semisimple Lie groups, in: Representation Theory of Groups and Algebras, in: Contemp. Math., vol. 145, 1993, pp. 249–257]. In the main part of this paper we establish a finiteness result for the Kazhdan–Lusztig tensor product which can be considered as an affine version of a theorem of Kostant [B. Kostant, On the tensor product of a finite and an infinite dimensional representation, J. Funct. Anal. 20 (1975) 257–285]. It contains as special cases the finiteness results of Kazhdan, Lusztig [D. Kazhdan, G. Lusztig, Tensor structures arising from affine Lie algebras, I, J. Amer. Math. Soc. 6 (1993) 905–947] and Finkelberg [M. Finkelberg, PhD thesis, Harvard University, 1993], and states that for any subalgebra f of g which is reductive in g the “affinization” of the category of finite length admissible ( g , f ) modules is stable under Kazhdan–Lusztig's tensoring with the “affinization” of the category of finite dimensional g modules (which is O κ in the notation of [D. Kazhdan, G. Lusztig, Tensor structures arising from affine Lie algebras, I, J. Amer. Math. Soc. 6 (1993) 905–947; D. Kazhdan, G. Lusztig, Tensor structures arising from affine Lie algebras, II, J. Amer. Math. Soc. 6 (1994) 949–1011; D. Kazhdan, G. Lusztig, Tensor structures arising from affine Lie algebras, IV, J. Amer. Math. Soc. 7 (1994) 383–453])." @default.
- W2092392334 created "2016-06-24" @default.
- W2092392334 creator A5088262067 @default.
- W2092392334 date "2008-04-01" @default.
- W2092392334 modified "2023-10-14" @default.
- W2092392334 title "Categories of modules over an affine Kac–Moody algebra and finiteness of the Kazhdan–Lusztig tensor product" @default.
- W2092392334 cites W1519011338 @default.
- W2092392334 cites W1990991669 @default.
- W2092392334 cites W2009930506 @default.
- W2092392334 cites W2030771335 @default.
- W2092392334 cites W2069730285 @default.
- W2092392334 cites W2076264785 @default.
- W2092392334 cites W2161091926 @default.
- W2092392334 cites W2342614016 @default.
- W2092392334 cites W2952820562 @default.
- W2092392334 cites W4232743096 @default.
- W2092392334 cites W4254413747 @default.
- W2092392334 doi "https://doi.org/10.1016/j.jalgebra.2007.09.026" @default.
- W2092392334 hasPublicationYear "2008" @default.
- W2092392334 type Work @default.
- W2092392334 sameAs 2092392334 @default.
- W2092392334 citedByCount "3" @default.
- W2092392334 countsByYear W20923923342015 @default.
- W2092392334 countsByYear W20923923342022 @default.
- W2092392334 crossrefType "journal-article" @default.
- W2092392334 hasAuthorship W2092392334A5088262067 @default.
- W2092392334 hasBestOaLocation W20923923341 @default.
- W2092392334 hasConcept C101783463 @default.
- W2092392334 hasConcept C124007464 @default.
- W2092392334 hasConcept C136119220 @default.
- W2092392334 hasConcept C155281189 @default.
- W2092392334 hasConcept C202444582 @default.
- W2092392334 hasConcept C2524010 @default.
- W2092392334 hasConcept C33923547 @default.
- W2092392334 hasConcept C51255310 @default.
- W2092392334 hasConcept C90673727 @default.
- W2092392334 hasConcept C92757383 @default.
- W2092392334 hasConcept C93776189 @default.
- W2092392334 hasConceptScore W2092392334C101783463 @default.
- W2092392334 hasConceptScore W2092392334C124007464 @default.
- W2092392334 hasConceptScore W2092392334C136119220 @default.
- W2092392334 hasConceptScore W2092392334C155281189 @default.
- W2092392334 hasConceptScore W2092392334C202444582 @default.
- W2092392334 hasConceptScore W2092392334C2524010 @default.
- W2092392334 hasConceptScore W2092392334C33923547 @default.
- W2092392334 hasConceptScore W2092392334C51255310 @default.
- W2092392334 hasConceptScore W2092392334C90673727 @default.
- W2092392334 hasConceptScore W2092392334C92757383 @default.
- W2092392334 hasConceptScore W2092392334C93776189 @default.
- W2092392334 hasIssue "8" @default.
- W2092392334 hasLocation W20923923341 @default.
- W2092392334 hasLocation W20923923342 @default.
- W2092392334 hasOpenAccess W2092392334 @default.
- W2092392334 hasPrimaryLocation W20923923341 @default.
- W2092392334 hasRelatedWork W2026161067 @default.
- W2092392334 hasRelatedWork W2201223056 @default.
- W2092392334 hasRelatedWork W2745650665 @default.
- W2092392334 hasRelatedWork W2950705453 @default.
- W2092392334 hasRelatedWork W2951707227 @default.
- W2092392334 hasRelatedWork W2963496554 @default.
- W2092392334 hasRelatedWork W2998813012 @default.
- W2092392334 hasRelatedWork W4297939265 @default.
- W2092392334 hasRelatedWork W4298343018 @default.
- W2092392334 hasRelatedWork W4298438138 @default.
- W2092392334 hasVolume "319" @default.
- W2092392334 isParatext "false" @default.
- W2092392334 isRetracted "false" @default.
- W2092392334 magId "2092392334" @default.
- W2092392334 workType "article" @default.