Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092458402> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2092458402 endingPage "807" @default.
- W2092458402 startingPage "801" @default.
- W2092458402 abstract "The core of an ideal is the intersection of all its reductions. In 2005, Polini and Ulrich explicitly described the core as a colon ideal of a power of a single reduction and a power of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper I> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=application/x-tex>I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for a broader class of ideals, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper I> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=application/x-tex>I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an ideal in a local Cohen-Macaulay ring. In this paper, we show that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper I> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=application/x-tex>I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an ideal of analytic spread <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=1> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=application/x-tex>1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in a Noetherian local ring with infinite residue field, then with some mild conditions on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper I> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=application/x-tex>I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we have <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=c o r e left-parenthesis upper I right-parenthesis superset-of-or-equal-to upper J left-parenthesis upper J Superscript n Baseline colon upper I Superscript n Baseline right-parenthesis equals upper I left-parenthesis upper J Superscript n Baseline colon upper I Superscript n Baseline right-parenthesis equals left-parenthesis upper J Superscript n plus 1 Baseline colon upper I Superscript n Baseline right-parenthesis intersection upper I> <mml:semantics> <mml:mrow> <mml:mi>core</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>I</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>⊇<!-- ⊇ --></mml:mo> <mml:mi>J</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mi>J</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>I</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>I</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mi>J</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>I</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mi>J</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>I</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mo>∩<!-- ∩ --></mml:mo> <mml:mi>I</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>operatorname {core} (I)supseteq J(J^n: I^n)=I(J^n: I^n)=(J^{n+1}: I^n)cap I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any minimal reduction <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper J> <mml:semantics> <mml:mi>J</mml:mi> <mml:annotation encoding=application/x-tex>J</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper I> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=application/x-tex>I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n much-greater-than 0> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≫<!-- ≫ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>ngg 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W2092458402 created "2016-06-24" @default.
- W2092458402 creator A5066752006 @default.
- W2092458402 date "2007-11-23" @default.
- W2092458402 modified "2023-09-24" @default.
- W2092458402 title "Core of ideals of Noetherian local rings" @default.
- W2092458402 cites W1835767203 @default.
- W2092458402 cites W1969143262 @default.
- W2092458402 cites W1999983115 @default.
- W2092458402 cites W2002912659 @default.
- W2092458402 cites W2034275879 @default.
- W2092458402 cites W2096220127 @default.
- W2092458402 cites W2150706841 @default.
- W2092458402 doi "https://doi.org/10.1090/s0002-9939-07-09038-7" @default.
- W2092458402 hasPublicationYear "2007" @default.
- W2092458402 type Work @default.
- W2092458402 sameAs 2092458402 @default.
- W2092458402 citedByCount "2" @default.
- W2092458402 countsByYear W20924584022016 @default.
- W2092458402 countsByYear W20924584022023 @default.
- W2092458402 crossrefType "journal-article" @default.
- W2092458402 hasAuthorship W2092458402A5066752006 @default.
- W2092458402 hasBestOaLocation W20924584021 @default.
- W2092458402 hasConcept C11413529 @default.
- W2092458402 hasConcept C118615104 @default.
- W2092458402 hasConcept C154945302 @default.
- W2092458402 hasConcept C183778304 @default.
- W2092458402 hasConcept C18903297 @default.
- W2092458402 hasConcept C2776321320 @default.
- W2092458402 hasConcept C2777299769 @default.
- W2092458402 hasConcept C2777726979 @default.
- W2092458402 hasConcept C33923547 @default.
- W2092458402 hasConcept C41008148 @default.
- W2092458402 hasConcept C86803240 @default.
- W2092458402 hasConceptScore W2092458402C11413529 @default.
- W2092458402 hasConceptScore W2092458402C118615104 @default.
- W2092458402 hasConceptScore W2092458402C154945302 @default.
- W2092458402 hasConceptScore W2092458402C183778304 @default.
- W2092458402 hasConceptScore W2092458402C18903297 @default.
- W2092458402 hasConceptScore W2092458402C2776321320 @default.
- W2092458402 hasConceptScore W2092458402C2777299769 @default.
- W2092458402 hasConceptScore W2092458402C2777726979 @default.
- W2092458402 hasConceptScore W2092458402C33923547 @default.
- W2092458402 hasConceptScore W2092458402C41008148 @default.
- W2092458402 hasConceptScore W2092458402C86803240 @default.
- W2092458402 hasIssue "3" @default.
- W2092458402 hasLocation W20924584021 @default.
- W2092458402 hasOpenAccess W2092458402 @default.
- W2092458402 hasPrimaryLocation W20924584021 @default.
- W2092458402 hasRelatedWork W151193258 @default.
- W2092458402 hasRelatedWork W1529400504 @default.
- W2092458402 hasRelatedWork W1871911958 @default.
- W2092458402 hasRelatedWork W1892467659 @default.
- W2092458402 hasRelatedWork W2348710178 @default.
- W2092458402 hasRelatedWork W2349865494 @default.
- W2092458402 hasRelatedWork W2808586768 @default.
- W2092458402 hasRelatedWork W2998403542 @default.
- W2092458402 hasRelatedWork W3201926073 @default.
- W2092458402 hasRelatedWork W73525116 @default.
- W2092458402 hasVolume "136" @default.
- W2092458402 isParatext "false" @default.
- W2092458402 isRetracted "false" @default.
- W2092458402 magId "2092458402" @default.
- W2092458402 workType "article" @default.