Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092587913> ?p ?o ?g. }
- W2092587913 endingPage "192" @default.
- W2092587913 startingPage "174" @default.
- W2092587913 abstract "Abstract Developing on the ideas of (Section 4 of) [A. Misra, P. Shukla, Moduli stabilization, large-volume dS minimum without anti-D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi–Yau's, Nucl. Phys. B 799 (2008) 165–198, arXiv: 0707.0105 ] and [A. Misra, P. Shukla, Large volume axionic Swiss-cheese inflation, Nucl. Phys. B 800 (2008) 384–400, arXiv: 0712.1260 [hep-th] ] and using the formalisms of [S. Yokoyama, T. Suyama, T. Tanaka, Primordial non-Gaussianity in multi-scalar slow-roll inflation, arXiv: 0705.3178 [astro-ph] ; S. Yokoyama, T. Suyama, T. Tanaka, Primordial non-Gaussianity in multi-scalar inflation, Phys. Rev. D 77 (2008) 083511, arXiv: 0711.2920 [astro-ph] ], after inclusion of perturbative and non-perturbative α ′ corrections to the Kahler potential and (D1- and D3-)instanton generated superpotential, we show the possibility of getting finite values for the non-linear parameter f NL while looking for non-Gaussianities in type IIB compactifications on orientifolds of the Swiss cheese Calabi–Yau WCP 4 [ 1 , 1 , 1 , 6 , 9 ] in the L(arge) V(olume) S(cenarios) limit. We show the same in two contexts. First is multi-field slow-roll inflation with D3-instanton contribution coming from a large number of multiple wrappings of a single (Euclidean) D3-brane around the “small” divisor yielding f NL ∼ O ( 1 ) . The second is when the slow-roll conditions are violated and for the number of the aforementioned D3-instanton wrappings being of O ( 1 ) but more than one, yielding f NL ∼ O ( 1 ) . Based on general arguments not specific to our (string-theory) set-up, we argue that requiring curvature perturbations not to grow at horizon crossing and at super-horizon scales, automatically picks out hybrid inflationary scenarios which in our set up can yield f NL ∼ O ( 1 ) and tensor–scalar ratio of O ( 10 −2 ) . For all our calculations, the world-sheet instanton contributions to the Kahler potential coming from the non-perturbative α ′ corrections, are restricted to appropriate choices of the degrees of genus-zero rational curves that correspond to very large values of Gopakumar–Vafa invariants for the chosen compact projective variety. To our knowledge, such values of non-Gaussianities and tensor–scalar ratio in slow-roll inflationary and/or slow-roll violating scenarios, have been obtained for the first time from string theory. We also make some observations pertaining to the possibility of the axionic inflaton also being a cold dark matter candidate as well as a quintessence field used for explaining dark energy. Our calculations predict, however, loss of scale invariance of the spectral index of curvature perturbations beyond the existing experimental bounds if one requires “freeze-out” of curvature perturbations at horizon crossing and super-horizon scales. The violation of scale invariance is within experimental bounds if the freeze-out is required only at super-horizon scales—in such scenarios, one can get f NL ∼ O ( 1 ) and r ∼ 10 −2 ." @default.
- W2092587913 created "2016-06-24" @default.
- W2092587913 creator A5020350443 @default.
- W2092587913 creator A5031620794 @default.
- W2092587913 date "2009-03-01" @default.
- W2092587913 modified "2023-09-26" @default.
- W2092587913 title "“Finite” non-Gaussianities and tensor–scalar ratio in large volume Swiss-cheese compactifications" @default.
- W2092587913 cites W1963656163 @default.
- W2092587913 cites W1966702659 @default.
- W2092587913 cites W1970714248 @default.
- W2092587913 cites W1971230011 @default.
- W2092587913 cites W1973861971 @default.
- W2092587913 cites W1973871771 @default.
- W2092587913 cites W1977668606 @default.
- W2092587913 cites W1981787878 @default.
- W2092587913 cites W1984049720 @default.
- W2092587913 cites W1992347118 @default.
- W2092587913 cites W2002123861 @default.
- W2092587913 cites W2008061066 @default.
- W2092587913 cites W2021539300 @default.
- W2092587913 cites W2035433892 @default.
- W2092587913 cites W2036888309 @default.
- W2092587913 cites W2044983500 @default.
- W2092587913 cites W2048151239 @default.
- W2092587913 cites W2052027323 @default.
- W2092587913 cites W2059448664 @default.
- W2092587913 cites W2074458016 @default.
- W2092587913 cites W2086623448 @default.
- W2092587913 cites W2091551636 @default.
- W2092587913 cites W2092870297 @default.
- W2092587913 cites W2094774003 @default.
- W2092587913 cites W2098764352 @default.
- W2092587913 cites W2099609130 @default.
- W2092587913 cites W2118496247 @default.
- W2092587913 cites W2121611702 @default.
- W2092587913 cites W2123864481 @default.
- W2092587913 cites W2125835296 @default.
- W2092587913 cites W2131261154 @default.
- W2092587913 cites W2134251287 @default.
- W2092587913 cites W2136857249 @default.
- W2092587913 cites W2137347284 @default.
- W2092587913 cites W2145758818 @default.
- W2092587913 cites W2147453274 @default.
- W2092587913 cites W2151199878 @default.
- W2092587913 cites W2161628068 @default.
- W2092587913 cites W2166781395 @default.
- W2092587913 cites W2524877512 @default.
- W2092587913 cites W2790416429 @default.
- W2092587913 cites W2950990523 @default.
- W2092587913 cites W3099577638 @default.
- W2092587913 cites W3101043690 @default.
- W2092587913 cites W3103574848 @default.
- W2092587913 cites W3104495505 @default.
- W2092587913 cites W3123239044 @default.
- W2092587913 cites W3886756 @default.
- W2092587913 doi "https://doi.org/10.1016/j.nuclphysb.2008.10.022" @default.
- W2092587913 hasPublicationYear "2009" @default.
- W2092587913 type Work @default.
- W2092587913 sameAs 2092587913 @default.
- W2092587913 citedByCount "22" @default.
- W2092587913 countsByYear W20925879132012 @default.
- W2092587913 countsByYear W20925879132013 @default.
- W2092587913 countsByYear W20925879132014 @default.
- W2092587913 crossrefType "journal-article" @default.
- W2092587913 hasAuthorship W2092587913A5020350443 @default.
- W2092587913 hasAuthorship W2092587913A5031620794 @default.
- W2092587913 hasBestOaLocation W20925879132 @default.
- W2092587913 hasConcept C121332964 @default.
- W2092587913 hasConcept C121864883 @default.
- W2092587913 hasConcept C155281189 @default.
- W2092587913 hasConcept C202444582 @default.
- W2092587913 hasConcept C20556612 @default.
- W2092587913 hasConcept C2524010 @default.
- W2092587913 hasConcept C33923547 @default.
- W2092587913 hasConcept C37914503 @default.
- W2092587913 hasConcept C57691317 @default.
- W2092587913 hasConcept C97355855 @default.
- W2092587913 hasConceptScore W2092587913C121332964 @default.
- W2092587913 hasConceptScore W2092587913C121864883 @default.
- W2092587913 hasConceptScore W2092587913C155281189 @default.
- W2092587913 hasConceptScore W2092587913C202444582 @default.
- W2092587913 hasConceptScore W2092587913C20556612 @default.
- W2092587913 hasConceptScore W2092587913C2524010 @default.
- W2092587913 hasConceptScore W2092587913C33923547 @default.
- W2092587913 hasConceptScore W2092587913C37914503 @default.
- W2092587913 hasConceptScore W2092587913C57691317 @default.
- W2092587913 hasConceptScore W2092587913C97355855 @default.
- W2092587913 hasIssue "1-2" @default.
- W2092587913 hasLocation W20925879131 @default.
- W2092587913 hasLocation W20925879132 @default.
- W2092587913 hasOpenAccess W2092587913 @default.
- W2092587913 hasPrimaryLocation W20925879131 @default.
- W2092587913 hasRelatedWork W1982119637 @default.
- W2092587913 hasRelatedWork W2018044591 @default.
- W2092587913 hasRelatedWork W2170880167 @default.
- W2092587913 hasRelatedWork W2193125515 @default.
- W2092587913 hasRelatedWork W2224130604 @default.
- W2092587913 hasRelatedWork W2332994577 @default.