Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092604902> ?p ?o ?g. }
Showing items 1 to 41 of
41
with 100 items per page.
- W2092604902 abstract "MDQL is an algorithm, based on reinforcement learning, for solving multiple objective optimization problems, that has been tested on several applications with promising results [1]. MDQL discretizes the decision variables into a set of states, each associated with actions to move agents to contiguous states. A group of agents explore this state space and are able to find Pareto sets applying a distributed reinforcement learning algorithm. The precision of the Pareto solutions depends on the chosen granularity of the states. A finer granularity on the states creates more precise solutions but at the expense of a larger search space, and consequently the need for more computational resources. An important improvement is presented. The new algorithm, called IMDQL, starts with a coarse granularity to find an initial Pareto set. A vicinity for each of the Pareto solutions in refined and a new Pareto set is founded in this refined state space. It is shown that IMDQL not only improves the solutions found by MDQL, but also converges faster and is capable to approximate dynamic Pareto fronts. The main consideration in the application of IMDQL to dynamic environments is that the agents in the algorithm start from the Pareto solutions obtained. Agents start with a deterministic environment constructed with fixed values for the value functions for the first dynamic parameters; when convergence is reached and a Pareto set is obtained, a new cycle is started, changing to the next value for the dynamic parameters. Agents start searching (adapting solutions) from the existing environments which correspond to the Pareto solutions obtained for the previous value for the dynamic parameters. Searching for new solutions, from the last Pareto set, given the new values for the dynamic parameters, significantly reduces the convergence time. IMDQL is tested on a real water distribution network design involving water-reusing treatment plants and different contaminants concentrations [1]. In this problem, the concentration of contaminants can change over time so the search for optimal solutions becomes a continuous process. It is shown that IMDQL improves on the solutions found by MDQL with fixed concentrations and, that due to its incremental nature, it is able to adequately adjust its Pareto set solutions with dynamic changes in the contaminants conCopyright is held by the author/owner(s). GECCO’07, July 7–11, 2007, London, England, United Kingdom. ACM 978-1-59593-697-4/07/0007. 240" @default.
- W2092604902 created "2016-06-24" @default.
- W2092604902 creator A5011973090 @default.
- W2092604902 creator A5019607019 @default.
- W2092604902 creator A5059686966 @default.
- W2092604902 date "2007-07-07" @default.
- W2092604902 modified "2023-09-27" @default.
- W2092604902 title "Incremental refinement of solutions for multiple objective optimization problems" @default.
- W2092604902 cites W1585223895 @default.
- W2092604902 doi "https://doi.org/10.1145/1276958.1277140" @default.
- W2092604902 hasPublicationYear "2007" @default.
- W2092604902 type Work @default.
- W2092604902 sameAs 2092604902 @default.
- W2092604902 citedByCount "0" @default.
- W2092604902 crossrefType "proceedings-article" @default.
- W2092604902 hasAuthorship W2092604902A5011973090 @default.
- W2092604902 hasAuthorship W2092604902A5019607019 @default.
- W2092604902 hasAuthorship W2092604902A5059686966 @default.
- W2092604902 hasConcept C126255220 @default.
- W2092604902 hasConcept C33923547 @default.
- W2092604902 hasConcept C41008148 @default.
- W2092604902 hasConceptScore W2092604902C126255220 @default.
- W2092604902 hasConceptScore W2092604902C33923547 @default.
- W2092604902 hasConceptScore W2092604902C41008148 @default.
- W2092604902 hasLocation W20926049021 @default.
- W2092604902 hasOpenAccess W2092604902 @default.
- W2092604902 hasPrimaryLocation W20926049021 @default.
- W2092604902 hasRelatedWork W2093578348 @default.
- W2092604902 hasRelatedWork W2130043461 @default.
- W2092604902 hasRelatedWork W2350741829 @default.
- W2092604902 hasRelatedWork W2358668433 @default.
- W2092604902 hasRelatedWork W2376932109 @default.
- W2092604902 hasRelatedWork W2382290278 @default.
- W2092604902 hasRelatedWork W2390279801 @default.
- W2092604902 hasRelatedWork W2748952813 @default.
- W2092604902 hasRelatedWork W2899084033 @default.
- W2092604902 hasRelatedWork W3004735627 @default.
- W2092604902 isParatext "false" @default.
- W2092604902 isRetracted "false" @default.
- W2092604902 magId "2092604902" @default.
- W2092604902 workType "article" @default.