Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092685533> ?p ?o ?g. }
- W2092685533 endingPage "350" @default.
- W2092685533 startingPage "342" @default.
- W2092685533 abstract "The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics." @default.
- W2092685533 created "2016-06-24" @default.
- W2092685533 creator A5033559171 @default.
- W2092685533 creator A5035250882 @default.
- W2092685533 creator A5060153949 @default.
- W2092685533 creator A5066778919 @default.
- W2092685533 creator A5068192515 @default.
- W2092685533 creator A5068221703 @default.
- W2092685533 creator A5068413136 @default.
- W2092685533 creator A5087899038 @default.
- W2092685533 date "2007-04-01" @default.
- W2092685533 modified "2023-10-18" @default.
- W2092685533 title "Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG)" @default.
- W2092685533 cites W1847168837 @default.
- W2092685533 cites W1967179208 @default.
- W2092685533 cites W1967237003 @default.
- W2092685533 cites W1968707190 @default.
- W2092685533 cites W1975225914 @default.
- W2092685533 cites W1983737871 @default.
- W2092685533 cites W1984667371 @default.
- W2092685533 cites W1984828228 @default.
- W2092685533 cites W1996267865 @default.
- W2092685533 cites W2014314513 @default.
- W2092685533 cites W2018335290 @default.
- W2092685533 cites W2022914662 @default.
- W2092685533 cites W2029162491 @default.
- W2092685533 cites W2048820225 @default.
- W2092685533 cites W2050304075 @default.
- W2092685533 cites W2058741064 @default.
- W2092685533 cites W2066472246 @default.
- W2092685533 cites W2078005239 @default.
- W2092685533 cites W2084409721 @default.
- W2092685533 cites W2086482881 @default.
- W2092685533 cites W2093109772 @default.
- W2092685533 cites W2097400415 @default.
- W2092685533 cites W2101820237 @default.
- W2092685533 cites W2104960492 @default.
- W2092685533 cites W2106528101 @default.
- W2092685533 cites W2121451459 @default.
- W2092685533 cites W2133199783 @default.
- W2092685533 cites W2151393950 @default.
- W2092685533 cites W2156220037 @default.
- W2092685533 cites W2312856127 @default.
- W2092685533 cites W2374804331 @default.
- W2092685533 cites W2911964244 @default.
- W2092685533 cites W2997325244 @default.
- W2092685533 cites W4212883601 @default.
- W2092685533 cites W4235011515 @default.
- W2092685533 cites W4239510810 @default.
- W2092685533 cites W4255318763 @default.
- W2092685533 doi "https://doi.org/10.1016/j.jneumeth.2006.10.023" @default.
- W2092685533 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17156848" @default.
- W2092685533 hasPublicationYear "2007" @default.
- W2092685533 type Work @default.
- W2092685533 sameAs 2092685533 @default.
- W2092685533 citedByCount "263" @default.
- W2092685533 countsByYear W20926855332012 @default.
- W2092685533 countsByYear W20926855332013 @default.
- W2092685533 countsByYear W20926855332014 @default.
- W2092685533 countsByYear W20926855332015 @default.
- W2092685533 countsByYear W20926855332016 @default.
- W2092685533 countsByYear W20926855332017 @default.
- W2092685533 countsByYear W20926855332018 @default.
- W2092685533 countsByYear W20926855332019 @default.
- W2092685533 countsByYear W20926855332020 @default.
- W2092685533 countsByYear W20926855332021 @default.
- W2092685533 countsByYear W20926855332022 @default.
- W2092685533 countsByYear W20926855332023 @default.
- W2092685533 crossrefType "journal-article" @default.
- W2092685533 hasAuthorship W2092685533A5033559171 @default.
- W2092685533 hasAuthorship W2092685533A5035250882 @default.
- W2092685533 hasAuthorship W2092685533A5060153949 @default.
- W2092685533 hasAuthorship W2092685533A5066778919 @default.
- W2092685533 hasAuthorship W2092685533A5068192515 @default.
- W2092685533 hasAuthorship W2092685533A5068221703 @default.
- W2092685533 hasAuthorship W2092685533A5068413136 @default.
- W2092685533 hasAuthorship W2092685533A5087899038 @default.
- W2092685533 hasConcept C105795698 @default.
- W2092685533 hasConcept C110083411 @default.
- W2092685533 hasConcept C11413529 @default.
- W2092685533 hasConcept C118552586 @default.
- W2092685533 hasConcept C119857082 @default.
- W2092685533 hasConcept C12267149 @default.
- W2092685533 hasConcept C151956035 @default.
- W2092685533 hasConcept C153180895 @default.
- W2092685533 hasConcept C154945302 @default.
- W2092685533 hasConcept C169258074 @default.
- W2092685533 hasConcept C27438332 @default.
- W2092685533 hasConcept C33923547 @default.
- W2092685533 hasConcept C41008148 @default.
- W2092685533 hasConcept C50644808 @default.
- W2092685533 hasConcept C522805319 @default.
- W2092685533 hasConcept C69738355 @default.
- W2092685533 hasConcept C71924100 @default.
- W2092685533 hasConceptScore W2092685533C105795698 @default.
- W2092685533 hasConceptScore W2092685533C110083411 @default.
- W2092685533 hasConceptScore W2092685533C11413529 @default.
- W2092685533 hasConceptScore W2092685533C118552586 @default.