Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092773910> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2092773910 abstract "Outliers are special observations or extraordinary cases in the available data which deviate so much from other observations so as to arouse suspicions that they were generated by a different mechanism. Outliers detected can be used to identify special or extraordinary or fraudulent cases in day to day transactions. Outlier detection can be used to identify the noise in the data and these detected outliers have to be removed to improve data quality. Outlier Detection can be used for Traffic Analysis, Credit Card Fraud Detection. We applied Outlier Detection to Traffic data set for identifying the outlier stations on the highway. Detected outlier stations represent abnormalities in the traffic sensors data. This information is used by us to identify the faulty traffic sensors located at the highway stations. We have provided two dimensional visualization of the outliers which can be used for analyzing the data in an efficient manner. Traffic Management becomes easier when the abnormal traffic sensors identified at the corresponding outlier stations are identified. The method used here is a Statistic Approach. This technique compares every location to its neighbors using the Statistic. The Statistic is calculated to identify whether the data generated at a highway traffic station sensor is abnormal or not. This technique can be used efficiently to identify the outliers. This method can be easily applied to very large datasets as compared to existing conventional approaches." @default.
- W2092773910 created "2016-06-24" @default.
- W2092773910 creator A5068034846 @default.
- W2092773910 date "2011-01-01" @default.
- W2092773910 modified "2023-09-25" @default.
- W2092773910 title "Outlier detection and visualization of large datasets" @default.
- W2092773910 cites W1586410151 @default.
- W2092773910 cites W1602011302 @default.
- W2092773910 cites W1938740620 @default.
- W2092773910 cites W2061240327 @default.
- W2092773910 cites W2117891917 @default.
- W2092773910 cites W2140190241 @default.
- W2092773910 cites W2169217090 @default.
- W2092773910 cites W2169956614 @default.
- W2092773910 cites W2331052961 @default.
- W2092773910 doi "https://doi.org/10.1145/1980022.1980134" @default.
- W2092773910 hasPublicationYear "2011" @default.
- W2092773910 type Work @default.
- W2092773910 sameAs 2092773910 @default.
- W2092773910 citedByCount "1" @default.
- W2092773910 countsByYear W20927739102022 @default.
- W2092773910 crossrefType "proceedings-article" @default.
- W2092773910 hasAuthorship W2092773910A5068034846 @default.
- W2092773910 hasConcept C105795698 @default.
- W2092773910 hasConcept C124101348 @default.
- W2092773910 hasConcept C154945302 @default.
- W2092773910 hasConcept C172367668 @default.
- W2092773910 hasConcept C33923547 @default.
- W2092773910 hasConcept C36464697 @default.
- W2092773910 hasConcept C41008148 @default.
- W2092773910 hasConcept C58489278 @default.
- W2092773910 hasConcept C739882 @default.
- W2092773910 hasConcept C79337645 @default.
- W2092773910 hasConcept C89128539 @default.
- W2092773910 hasConceptScore W2092773910C105795698 @default.
- W2092773910 hasConceptScore W2092773910C124101348 @default.
- W2092773910 hasConceptScore W2092773910C154945302 @default.
- W2092773910 hasConceptScore W2092773910C172367668 @default.
- W2092773910 hasConceptScore W2092773910C33923547 @default.
- W2092773910 hasConceptScore W2092773910C36464697 @default.
- W2092773910 hasConceptScore W2092773910C41008148 @default.
- W2092773910 hasConceptScore W2092773910C58489278 @default.
- W2092773910 hasConceptScore W2092773910C739882 @default.
- W2092773910 hasConceptScore W2092773910C79337645 @default.
- W2092773910 hasConceptScore W2092773910C89128539 @default.
- W2092773910 hasLocation W20927739101 @default.
- W2092773910 hasOpenAccess W2092773910 @default.
- W2092773910 hasPrimaryLocation W20927739101 @default.
- W2092773910 hasRelatedWork W1556666131 @default.
- W2092773910 hasRelatedWork W1964965419 @default.
- W2092773910 hasRelatedWork W2067785713 @default.
- W2092773910 hasRelatedWork W2109634084 @default.
- W2092773910 hasRelatedWork W2360760793 @default.
- W2092773910 hasRelatedWork W2390515779 @default.
- W2092773910 hasRelatedWork W2556435479 @default.
- W2092773910 hasRelatedWork W2762431226 @default.
- W2092773910 hasRelatedWork W2783436543 @default.
- W2092773910 hasRelatedWork W2888137349 @default.
- W2092773910 hasRelatedWork W2889390244 @default.
- W2092773910 hasRelatedWork W2936342010 @default.
- W2092773910 hasRelatedWork W2946096271 @default.
- W2092773910 hasRelatedWork W3023130939 @default.
- W2092773910 hasRelatedWork W3080145627 @default.
- W2092773910 hasRelatedWork W3082132511 @default.
- W2092773910 hasRelatedWork W3117098906 @default.
- W2092773910 hasRelatedWork W2186522517 @default.
- W2092773910 hasRelatedWork W2567161336 @default.
- W2092773910 hasRelatedWork W2874058058 @default.
- W2092773910 isParatext "false" @default.
- W2092773910 isRetracted "false" @default.
- W2092773910 magId "2092773910" @default.
- W2092773910 workType "article" @default.