Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092800050> ?p ?o ?g. }
- W2092800050 endingPage "164" @default.
- W2092800050 startingPage "157" @default.
- W2092800050 abstract "The weighted-least-squares method based on the Gauss-Newton minimization technique is used for parameter estimation in water distribution networks. The parameters considered are: element resistances (single and/or group resistances, Hazen-Williams coefficients, pump specifications) and consumptions (for single or multiple loading conditions). The measurements considered are: nodal pressure heads, pipe flows, head loss in pipes, and consumptions/inflows. An important feature of the study is a detailed consideration of the influence of different choice of weights on parameter estimation, for error-free data, noisy data, and noisy data which include bad data. The method is applied to three different networks including a real-life problem." @default.
- W2092800050 created "2016-06-24" @default.
- W2092800050 creator A5071630815 @default.
- W2092800050 creator A5079030912 @default.
- W2092800050 creator A5022676471 @default.
- W2092800050 date "1996-05-01" @default.
- W2092800050 modified "2023-09-30" @default.
- W2092800050 title "WLS Method for Parameter Estimation in Water Distribution Networks" @default.
- W2092800050 cites W1965456687 @default.
- W2092800050 cites W1977663694 @default.
- W2092800050 cites W1979117523 @default.
- W2092800050 cites W1991949998 @default.
- W2092800050 cites W2019406172 @default.
- W2092800050 cites W2030044576 @default.
- W2092800050 cites W2042204969 @default.
- W2092800050 cites W2043617779 @default.
- W2092800050 cites W2050666207 @default.
- W2092800050 cites W2057189188 @default.
- W2092800050 cites W2077546704 @default.
- W2092800050 cites W2081260156 @default.
- W2092800050 cites W2089732753 @default.
- W2092800050 cites W2118967501 @default.
- W2092800050 cites W2125921855 @default.
- W2092800050 cites W2163824141 @default.
- W2092800050 cites W4230732587 @default.
- W2092800050 cites W840155112 @default.
- W2092800050 cites W2090252929 @default.
- W2092800050 doi "https://doi.org/10.1061/(asce)0733-9496(1996)122:3(157)" @default.
- W2092800050 hasPublicationYear "1996" @default.
- W2092800050 type Work @default.
- W2092800050 sameAs 2092800050 @default.
- W2092800050 citedByCount "89" @default.
- W2092800050 countsByYear W20928000502012 @default.
- W2092800050 countsByYear W20928000502013 @default.
- W2092800050 countsByYear W20928000502014 @default.
- W2092800050 countsByYear W20928000502015 @default.
- W2092800050 countsByYear W20928000502016 @default.
- W2092800050 countsByYear W20928000502017 @default.
- W2092800050 countsByYear W20928000502018 @default.
- W2092800050 countsByYear W20928000502019 @default.
- W2092800050 countsByYear W20928000502020 @default.
- W2092800050 countsByYear W20928000502021 @default.
- W2092800050 countsByYear W20928000502022 @default.
- W2092800050 countsByYear W20928000502023 @default.
- W2092800050 crossrefType "journal-article" @default.
- W2092800050 hasAuthorship W2092800050A5022676471 @default.
- W2092800050 hasAuthorship W2092800050A5071630815 @default.
- W2092800050 hasAuthorship W2092800050A5079030912 @default.
- W2092800050 hasConcept C105795698 @default.
- W2092800050 hasConcept C110121322 @default.
- W2092800050 hasConcept C11413529 @default.
- W2092800050 hasConcept C114793014 @default.
- W2092800050 hasConcept C121332964 @default.
- W2092800050 hasConcept C126255220 @default.
- W2092800050 hasConcept C127313418 @default.
- W2092800050 hasConcept C127413603 @default.
- W2092800050 hasConcept C128871136 @default.
- W2092800050 hasConcept C134306372 @default.
- W2092800050 hasConcept C138885662 @default.
- W2092800050 hasConcept C147764199 @default.
- W2092800050 hasConcept C159851900 @default.
- W2092800050 hasConcept C161794534 @default.
- W2092800050 hasConcept C167928553 @default.
- W2092800050 hasConcept C185429906 @default.
- W2092800050 hasConcept C187320778 @default.
- W2092800050 hasConcept C2776401178 @default.
- W2092800050 hasConcept C2780312720 @default.
- W2092800050 hasConcept C28826006 @default.
- W2092800050 hasConcept C33923547 @default.
- W2092800050 hasConcept C41008148 @default.
- W2092800050 hasConcept C41895202 @default.
- W2092800050 hasConcept C62520636 @default.
- W2092800050 hasConcept C78519656 @default.
- W2092800050 hasConcept C9936470 @default.
- W2092800050 hasConceptScore W2092800050C105795698 @default.
- W2092800050 hasConceptScore W2092800050C110121322 @default.
- W2092800050 hasConceptScore W2092800050C11413529 @default.
- W2092800050 hasConceptScore W2092800050C114793014 @default.
- W2092800050 hasConceptScore W2092800050C121332964 @default.
- W2092800050 hasConceptScore W2092800050C126255220 @default.
- W2092800050 hasConceptScore W2092800050C127313418 @default.
- W2092800050 hasConceptScore W2092800050C127413603 @default.
- W2092800050 hasConceptScore W2092800050C128871136 @default.
- W2092800050 hasConceptScore W2092800050C134306372 @default.
- W2092800050 hasConceptScore W2092800050C138885662 @default.
- W2092800050 hasConceptScore W2092800050C147764199 @default.
- W2092800050 hasConceptScore W2092800050C159851900 @default.
- W2092800050 hasConceptScore W2092800050C161794534 @default.
- W2092800050 hasConceptScore W2092800050C167928553 @default.
- W2092800050 hasConceptScore W2092800050C185429906 @default.
- W2092800050 hasConceptScore W2092800050C187320778 @default.
- W2092800050 hasConceptScore W2092800050C2776401178 @default.
- W2092800050 hasConceptScore W2092800050C2780312720 @default.
- W2092800050 hasConceptScore W2092800050C28826006 @default.
- W2092800050 hasConceptScore W2092800050C33923547 @default.
- W2092800050 hasConceptScore W2092800050C41008148 @default.
- W2092800050 hasConceptScore W2092800050C41895202 @default.
- W2092800050 hasConceptScore W2092800050C62520636 @default.