Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092811935> ?p ?o ?g. }
- W2092811935 endingPage "627" @default.
- W2092811935 startingPage "618" @default.
- W2092811935 abstract "Diffusion tensor imaging (DTI) can reveal detailed white matter anatomy and has the potential to detect abnormalities in specific white matter structures. Such detection and quantification are, however, not straightforward. The voxel-based analysis after image normalization is one of the most widely used methods for quantitative image analyses. To apply this approach to DTI, it is important to examine if structures in the white matter are well registered among subjects, which would be highly dependent on employed algorithms for normalization. In this paper, we evaluate the accuracy of normalization of DTI data using a highly elastic transformation algorithm, called large deformation diffeomorphic metric mapping. After simulation-based validation of the algorithm, DTI data from normal subjects were used to measure the registration accuracy. To examine the impact of morphological abnormalities on the accuracy, the algorithm was also tested using data from Alzheimer's disease (AD) patients with severe brain atrophy. The accuracy level was measured by using manual landmark-based white matter matching and surface-based brain and ventricle matching as gold standard. To improve the accuracy level, cascading and multi-contrast approaches were developed. The accuracy level for the white matter was 1.88 ± 0.55 and 2.19 ± 0.84 mm for the measured locations in the controls and patients, respectively." @default.
- W2092811935 created "2016-06-24" @default.
- W2092811935 creator A5002298857 @default.
- W2092811935 creator A5015928105 @default.
- W2092811935 creator A5022526821 @default.
- W2092811935 creator A5023514892 @default.
- W2092811935 creator A5024200262 @default.
- W2092811935 creator A5033151214 @default.
- W2092811935 creator A5033765540 @default.
- W2092811935 creator A5059342248 @default.
- W2092811935 creator A5064320962 @default.
- W2092811935 creator A5064821323 @default.
- W2092811935 date "2009-08-01" @default.
- W2092811935 modified "2023-10-13" @default.
- W2092811935 title "Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging" @default.
- W2092811935 cites W1526085390 @default.
- W2092811935 cites W1971198927 @default.
- W2092811935 cites W1977461050 @default.
- W2092811935 cites W2001211727 @default.
- W2092811935 cites W2001469430 @default.
- W2092811935 cites W2022530159 @default.
- W2092811935 cites W2058986306 @default.
- W2092811935 cites W2091741867 @default.
- W2092811935 cites W2097047986 @default.
- W2092811935 cites W2102099319 @default.
- W2092811935 cites W2102849263 @default.
- W2092811935 cites W2104612543 @default.
- W2092811935 cites W2109060361 @default.
- W2092811935 cites W2110431535 @default.
- W2092811935 cites W2110798659 @default.
- W2092811935 cites W2119848633 @default.
- W2092811935 cites W2123464668 @default.
- W2092811935 cites W2127610265 @default.
- W2092811935 cites W2141928661 @default.
- W2092811935 cites W2145138920 @default.
- W2092811935 cites W2148828979 @default.
- W2092811935 cites W2157035009 @default.
- W2092811935 cites W2170167891 @default.
- W2092811935 cites W2296621543 @default.
- W2092811935 cites W4247490877 @default.
- W2092811935 cites W4248533749 @default.
- W2092811935 cites W4249760698 @default.
- W2092811935 cites W4376595444 @default.
- W2092811935 doi "https://doi.org/10.1016/j.neuroimage.2009.04.057" @default.
- W2092811935 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2857762" @default.
- W2092811935 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19398016" @default.
- W2092811935 hasPublicationYear "2009" @default.
- W2092811935 type Work @default.
- W2092811935 sameAs 2092811935 @default.
- W2092811935 citedByCount "178" @default.
- W2092811935 countsByYear W20928119352012 @default.
- W2092811935 countsByYear W20928119352013 @default.
- W2092811935 countsByYear W20928119352014 @default.
- W2092811935 countsByYear W20928119352015 @default.
- W2092811935 countsByYear W20928119352016 @default.
- W2092811935 countsByYear W20928119352017 @default.
- W2092811935 countsByYear W20928119352018 @default.
- W2092811935 countsByYear W20928119352019 @default.
- W2092811935 countsByYear W20928119352020 @default.
- W2092811935 countsByYear W20928119352021 @default.
- W2092811935 countsByYear W20928119352022 @default.
- W2092811935 countsByYear W20928119352023 @default.
- W2092811935 crossrefType "journal-article" @default.
- W2092811935 hasAuthorship W2092811935A5002298857 @default.
- W2092811935 hasAuthorship W2092811935A5015928105 @default.
- W2092811935 hasAuthorship W2092811935A5022526821 @default.
- W2092811935 hasAuthorship W2092811935A5023514892 @default.
- W2092811935 hasAuthorship W2092811935A5024200262 @default.
- W2092811935 hasAuthorship W2092811935A5033151214 @default.
- W2092811935 hasAuthorship W2092811935A5033765540 @default.
- W2092811935 hasAuthorship W2092811935A5059342248 @default.
- W2092811935 hasAuthorship W2092811935A5064320962 @default.
- W2092811935 hasAuthorship W2092811935A5064821323 @default.
- W2092811935 hasBestOaLocation W20928119352 @default.
- W2092811935 hasConcept C116580362 @default.
- W2092811935 hasConcept C126838900 @default.
- W2092811935 hasConcept C136886441 @default.
- W2092811935 hasConcept C143409427 @default.
- W2092811935 hasConcept C144024400 @default.
- W2092811935 hasConcept C149550507 @default.
- W2092811935 hasConcept C153180895 @default.
- W2092811935 hasConcept C154945302 @default.
- W2092811935 hasConcept C162324750 @default.
- W2092811935 hasConcept C176217482 @default.
- W2092811935 hasConcept C19165224 @default.
- W2092811935 hasConcept C21547014 @default.
- W2092811935 hasConcept C2776502983 @default.
- W2092811935 hasConcept C2781192897 @default.
- W2092811935 hasConcept C31972630 @default.
- W2092811935 hasConcept C33923547 @default.
- W2092811935 hasConcept C41008148 @default.
- W2092811935 hasConcept C54170458 @default.
- W2092811935 hasConcept C71924100 @default.
- W2092811935 hasConcept C89916169 @default.
- W2092811935 hasConceptScore W2092811935C116580362 @default.
- W2092811935 hasConceptScore W2092811935C126838900 @default.
- W2092811935 hasConceptScore W2092811935C136886441 @default.
- W2092811935 hasConceptScore W2092811935C143409427 @default.