Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092963644> ?p ?o ?g. }
- W2092963644 endingPage "22" @default.
- W2092963644 startingPage "15" @default.
- W2092963644 abstract "Abstract A good spatial resolution is essential for high precision segmentations of small structures in magnetic resonance images. However, any increase in the spatial resolution results in a decrease of the signal‐to‐noise ratio (SNR). In this article, this problem is addressed by a new image restoration technique that is used to partly compensate for the loss in SNR. Specifically, a two‐stage hybrid image restoration procedure is proposed where the first stage is a Wiener wavelet filter for an initial denoising. The artifacts that will inevitably be produced by this step are subsequently reduced using a recent variant of anisotropic diffusion. The method is applied to magnetic resonance imaging data acquired on a 7‐T magnetic resonance imaging scanner and compared with averaged multiple measurements of the same subject. It was found that the effect of image restoration procedure roughly corresponds to averaging across three repeated measurements. Magn Reson Med 64:15–22, 2010. © 2010 Wiley‐Liss, Inc." @default.
- W2092963644 created "2016-06-24" @default.
- W2092963644 creator A5019469492 @default.
- W2092963644 creator A5033789564 @default.
- W2092963644 creator A5057758584 @default.
- W2092963644 creator A5087718038 @default.
- W2092963644 creator A5091847967 @default.
- W2092963644 date "2010-06-23" @default.
- W2092963644 modified "2023-10-18" @default.
- W2092963644 title "Image restoration and spatial resolution in 7‐tesla magnetic resonance imaging" @default.
- W2092963644 cites W1985517056 @default.
- W2092963644 cites W2011344206 @default.
- W2092963644 cites W2015080174 @default.
- W2092963644 cites W2035613792 @default.
- W2092963644 cites W2048865332 @default.
- W2092963644 cites W2051665036 @default.
- W2092963644 cites W2059784307 @default.
- W2092963644 cites W2064327730 @default.
- W2092963644 cites W2071074898 @default.
- W2092963644 cites W2079724595 @default.
- W2092963644 cites W2085764202 @default.
- W2092963644 cites W2091540466 @default.
- W2092963644 cites W2101675075 @default.
- W2092963644 cites W2130094715 @default.
- W2092963644 cites W2132140814 @default.
- W2092963644 cites W2137676365 @default.
- W2092963644 cites W2144536070 @default.
- W2092963644 cites W2150134853 @default.
- W2092963644 cites W2154878091 @default.
- W2092963644 cites W2159269332 @default.
- W2092963644 cites W2167818248 @default.
- W2092963644 cites W34513944 @default.
- W2092963644 cites W4250955649 @default.
- W2092963644 doi "https://doi.org/10.1002/mrm.22488" @default.
- W2092963644 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20577978" @default.
- W2092963644 hasPublicationYear "2010" @default.
- W2092963644 type Work @default.
- W2092963644 sameAs 2092963644 @default.
- W2092963644 citedByCount "27" @default.
- W2092963644 countsByYear W20929636442012 @default.
- W2092963644 countsByYear W20929636442013 @default.
- W2092963644 countsByYear W20929636442014 @default.
- W2092963644 countsByYear W20929636442015 @default.
- W2092963644 countsByYear W20929636442016 @default.
- W2092963644 countsByYear W20929636442017 @default.
- W2092963644 countsByYear W20929636442018 @default.
- W2092963644 countsByYear W20929636442020 @default.
- W2092963644 countsByYear W20929636442021 @default.
- W2092963644 countsByYear W20929636442022 @default.
- W2092963644 countsByYear W20929636442023 @default.
- W2092963644 crossrefType "journal-article" @default.
- W2092963644 hasAuthorship W2092963644A5019469492 @default.
- W2092963644 hasAuthorship W2092963644A5033789564 @default.
- W2092963644 hasAuthorship W2092963644A5057758584 @default.
- W2092963644 hasAuthorship W2092963644A5087718038 @default.
- W2092963644 hasAuthorship W2092963644A5091847967 @default.
- W2092963644 hasBestOaLocation W20929636441 @default.
- W2092963644 hasConcept C106131492 @default.
- W2092963644 hasConcept C106430172 @default.
- W2092963644 hasConcept C115961682 @default.
- W2092963644 hasConcept C120665830 @default.
- W2092963644 hasConcept C121332964 @default.
- W2092963644 hasConcept C126838900 @default.
- W2092963644 hasConcept C138268822 @default.
- W2092963644 hasConcept C13944312 @default.
- W2092963644 hasConcept C143409427 @default.
- W2092963644 hasConcept C154945302 @default.
- W2092963644 hasConcept C163294075 @default.
- W2092963644 hasConcept C18537770 @default.
- W2092963644 hasConcept C199360897 @default.
- W2092963644 hasConcept C205372480 @default.
- W2092963644 hasConcept C2779751349 @default.
- W2092963644 hasConcept C2779843651 @default.
- W2092963644 hasConcept C31972630 @default.
- W2092963644 hasConcept C41008148 @default.
- W2092963644 hasConcept C46141821 @default.
- W2092963644 hasConcept C47432892 @default.
- W2092963644 hasConcept C71924100 @default.
- W2092963644 hasConcept C9417928 @default.
- W2092963644 hasConcept C99498987 @default.
- W2092963644 hasConceptScore W2092963644C106131492 @default.
- W2092963644 hasConceptScore W2092963644C106430172 @default.
- W2092963644 hasConceptScore W2092963644C115961682 @default.
- W2092963644 hasConceptScore W2092963644C120665830 @default.
- W2092963644 hasConceptScore W2092963644C121332964 @default.
- W2092963644 hasConceptScore W2092963644C126838900 @default.
- W2092963644 hasConceptScore W2092963644C138268822 @default.
- W2092963644 hasConceptScore W2092963644C13944312 @default.
- W2092963644 hasConceptScore W2092963644C143409427 @default.
- W2092963644 hasConceptScore W2092963644C154945302 @default.
- W2092963644 hasConceptScore W2092963644C163294075 @default.
- W2092963644 hasConceptScore W2092963644C18537770 @default.
- W2092963644 hasConceptScore W2092963644C199360897 @default.
- W2092963644 hasConceptScore W2092963644C205372480 @default.
- W2092963644 hasConceptScore W2092963644C2779751349 @default.
- W2092963644 hasConceptScore W2092963644C2779843651 @default.
- W2092963644 hasConceptScore W2092963644C31972630 @default.
- W2092963644 hasConceptScore W2092963644C41008148 @default.