Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093040083> ?p ?o ?g. }
- W2093040083 endingPage "11" @default.
- W2093040083 startingPage "1" @default.
- W2093040083 abstract "Crude oil is the most important nonrenewable energy resource and the most key element for the world. In contrast to typical forecasts of oil price, this study aims at forecasting the demand of imported crude oil (ICO). This study proposes different single stage and two-stage hybrid stages of forecasting models for prediction of ICO in Taiwan. The single stage forecasting modeling includes multiple linear regression (MLR), support vector regression (SVR), artificial neural networks (ANN), and extreme learning machine (ELM) approaches. While the first step of the two-stage modeling is to select the fewer but more significant explanatory variables, the second step is to generate predictions by using these significant explanatory variables. The proposed two-stage hybrid models consist of integration of different modeling components. Mean absolute percentage error, root mean square error, and mean absolute difference are utilized as the performance measures. Real data set of crude oil in Taiwan for the period of 1993–2010 and twenty-three associated explanatory variables are sampled and investigated. The forecasting results reveal that the proposed two-stage hybrid modeling is able to accurately predict the demand of crude oil in Taiwan." @default.
- W2093040083 created "2016-06-24" @default.
- W2093040083 creator A5014802592 @default.
- W2093040083 creator A5072544119 @default.
- W2093040083 creator A5086300342 @default.
- W2093040083 date "2014-01-01" @default.
- W2093040083 modified "2023-10-16" @default.
- W2093040083 title "Hybrid Soft Computing Schemes for the Prediction of Import Demand of Crude Oil in Taiwan" @default.
- W2093040083 cites W1964768203 @default.
- W2093040083 cites W1965587486 @default.
- W2093040083 cites W1966498337 @default.
- W2093040083 cites W1966907853 @default.
- W2093040083 cites W1970523016 @default.
- W2093040083 cites W1972986413 @default.
- W2093040083 cites W1973511951 @default.
- W2093040083 cites W1976823155 @default.
- W2093040083 cites W1982857411 @default.
- W2093040083 cites W1987429725 @default.
- W2093040083 cites W1989264208 @default.
- W2093040083 cites W1990938413 @default.
- W2093040083 cites W1993602408 @default.
- W2093040083 cites W1997754540 @default.
- W2093040083 cites W2000656248 @default.
- W2093040083 cites W2006754760 @default.
- W2093040083 cites W2014484342 @default.
- W2093040083 cites W2015157547 @default.
- W2093040083 cites W2016211854 @default.
- W2093040083 cites W2029403485 @default.
- W2093040083 cites W2030275442 @default.
- W2093040083 cites W2032654523 @default.
- W2093040083 cites W2033400134 @default.
- W2093040083 cites W2035796535 @default.
- W2093040083 cites W2044391169 @default.
- W2093040083 cites W2046933993 @default.
- W2093040083 cites W2047431064 @default.
- W2093040083 cites W2047532608 @default.
- W2093040083 cites W2058128874 @default.
- W2093040083 cites W2066554715 @default.
- W2093040083 cites W2066850001 @default.
- W2093040083 cites W2070704689 @default.
- W2093040083 cites W2071151783 @default.
- W2093040083 cites W2075046504 @default.
- W2093040083 cites W2083238230 @default.
- W2093040083 cites W2085110978 @default.
- W2093040083 cites W2086917983 @default.
- W2093040083 cites W2092315180 @default.
- W2093040083 cites W2092903383 @default.
- W2093040083 cites W2093941285 @default.
- W2093040083 cites W2101674911 @default.
- W2093040083 cites W2111072639 @default.
- W2093040083 cites W2113244375 @default.
- W2093040083 cites W2117014758 @default.
- W2093040083 cites W2122040390 @default.
- W2093040083 cites W2131620235 @default.
- W2093040083 cites W2141695047 @default.
- W2093040083 cites W2143584045 @default.
- W2093040083 cites W2149298154 @default.
- W2093040083 cites W2152409702 @default.
- W2093040083 cites W2189957948 @default.
- W2093040083 cites W2540007442 @default.
- W2093040083 cites W4239242750 @default.
- W2093040083 doi "https://doi.org/10.1155/2014/257947" @default.
- W2093040083 hasPublicationYear "2014" @default.
- W2093040083 type Work @default.
- W2093040083 sameAs 2093040083 @default.
- W2093040083 citedByCount "5" @default.
- W2093040083 countsByYear W20930400832014 @default.
- W2093040083 countsByYear W20930400832015 @default.
- W2093040083 countsByYear W20930400832016 @default.
- W2093040083 countsByYear W20930400832019 @default.
- W2093040083 countsByYear W20930400832021 @default.
- W2093040083 crossrefType "journal-article" @default.
- W2093040083 hasAuthorship W2093040083A5014802592 @default.
- W2093040083 hasAuthorship W2093040083A5072544119 @default.
- W2093040083 hasAuthorship W2093040083A5086300342 @default.
- W2093040083 hasBestOaLocation W20930400831 @default.
- W2093040083 hasConcept C105795698 @default.
- W2093040083 hasConcept C11413529 @default.
- W2093040083 hasConcept C119857082 @default.
- W2093040083 hasConcept C12267149 @default.
- W2093040083 hasConcept C127413603 @default.
- W2093040083 hasConcept C139945424 @default.
- W2093040083 hasConcept C146357865 @default.
- W2093040083 hasConcept C149782125 @default.
- W2093040083 hasConcept C150217764 @default.
- W2093040083 hasConcept C151730666 @default.
- W2093040083 hasConcept C152877465 @default.
- W2093040083 hasConcept C154945302 @default.
- W2093040083 hasConcept C155512373 @default.
- W2093040083 hasConcept C2780150128 @default.
- W2093040083 hasConcept C2987168347 @default.
- W2093040083 hasConcept C33923547 @default.
- W2093040083 hasConcept C41008148 @default.
- W2093040083 hasConcept C48921125 @default.
- W2093040083 hasConcept C50644808 @default.
- W2093040083 hasConcept C78762247 @default.
- W2093040083 hasConcept C83546350 @default.
- W2093040083 hasConcept C86803240 @default.