Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093076602> ?p ?o ?g. }
- W2093076602 endingPage "38" @default.
- W2093076602 startingPage "27" @default.
- W2093076602 abstract "Abstract Few high-resolution measurements of process-form interactions have been taken on rock coasts, but recent studies in California have shown that portable seismometers enable useful proxy measurements of wave-energy delivery to cliffs. Here we describe measurements over 20 days of high frequency ground motion of cliffs formed in sedimentary (flysch) rocks at Okakari Point, north of Auckland, New Zealand. Three sensors were located in a shore-normal array inland from the cliff top and a fourth sensor was bolted to a ledge 2 m above the cliff toe. The nearshore wave field in front of the cliff and shore platform was monitored using a shore-normal array of 5 wave gauges. The instrumentation provided measurements of wave-energy delivery and consequent ground motion, including the first observations of motion at the top and bottom of cliffs. Results showed that horizontal ground motion is dominant at the cliff top, whereas vertical motion is dominant at the cliff toe. Power spectra show that several high frequency peaks occur in data from the cliff toe, whereas a single, broader peak frequency occurs at the cliff top resulting from signal modification as seismic waves pass through tens of metres of cliff rock. A 100 m wide shore platform at the cliff toe fundamentally controls the patterns of observed energy delivery. The shore platform is nearly horizontal, elevated close to high water level, and abruptly plunges into water > 10 m deep at its seaward edge. As expected, the magnitude of ground motion at all sensors is greatest during larger waves. Measurements further show that ground motion, both at the bottom and top of the cliff, is strongest at low tide and weakest at high tide. This observation is opposite to that noted at Santa Cruz, where ground motion was greatest at high tide. At Okakari Point the most significant high frequency ground motions occur at low tide when waves are forced to break (sometimes violently) against the seaward edge of the shore platform. Four distinctive frequency peaks between 1 and 50 Hz increase in magnitude as tidal stage drops, implying that wave breaking against the outside edge of the shore platform represents an important source of vibration. A detailed understanding of the energy source (e.g. short duration shock pressures) and rock resonance is not provided by this study. However, quantifying the spatial and temporal patterns of energy delivery places strong emphasis on the important role of shore platform geometry in filtering wave-energy delivery to the cliff. During the 20-day experiment most wave energy was delivered to the outside edge of the shore platform, not the cliff toe. The geomorphic role of high-frequency shaking from wave impacts remains to be clearly demonstrated, but if wave impacts are capable of eroding rock then the data from this study imply that under present conditions the outside edge of the shore platform may be subject to higher erosion rates than the cliff toe. It is possible that the shore platform is currently being destroyed rather than created, but a longer programme of measurements is required to test this notion." @default.
- W2093076602 created "2016-06-24" @default.
- W2093076602 creator A5005227632 @default.
- W2093076602 creator A5015668818 @default.
- W2093076602 date "2012-05-01" @default.
- W2093076602 modified "2023-09-26" @default.
- W2093076602 title "Micro-seismic measurements of cliff motion under wave impact and implications for the development of near-horizontal shore platforms" @default.
- W2093076602 cites W1495352880 @default.
- W2093076602 cites W1615191993 @default.
- W2093076602 cites W1966874500 @default.
- W2093076602 cites W1967563588 @default.
- W2093076602 cites W1971443370 @default.
- W2093076602 cites W1974583250 @default.
- W2093076602 cites W1978091613 @default.
- W2093076602 cites W1979674334 @default.
- W2093076602 cites W1982280957 @default.
- W2093076602 cites W1991651657 @default.
- W2093076602 cites W1993430077 @default.
- W2093076602 cites W1994082936 @default.
- W2093076602 cites W1997306004 @default.
- W2093076602 cites W2005538239 @default.
- W2093076602 cites W2016750192 @default.
- W2093076602 cites W2022439057 @default.
- W2093076602 cites W2035905362 @default.
- W2093076602 cites W2037754716 @default.
- W2093076602 cites W2045773909 @default.
- W2093076602 cites W2047645263 @default.
- W2093076602 cites W2052732318 @default.
- W2093076602 cites W2066188023 @default.
- W2093076602 cites W2074078080 @default.
- W2093076602 cites W2081608424 @default.
- W2093076602 cites W2087321767 @default.
- W2093076602 cites W2089302046 @default.
- W2093076602 cites W2093701286 @default.
- W2093076602 cites W2106822551 @default.
- W2093076602 cites W2118259172 @default.
- W2093076602 cites W2131553785 @default.
- W2093076602 cites W2148994357 @default.
- W2093076602 cites W2150037765 @default.
- W2093076602 cites W2159857018 @default.
- W2093076602 cites W2258544804 @default.
- W2093076602 cites W3115469340 @default.
- W2093076602 cites W4247429429 @default.
- W2093076602 doi "https://doi.org/10.1016/j.geomorph.2012.01.006" @default.
- W2093076602 hasPublicationYear "2012" @default.
- W2093076602 type Work @default.
- W2093076602 sameAs 2093076602 @default.
- W2093076602 citedByCount "28" @default.
- W2093076602 countsByYear W20930766022012 @default.
- W2093076602 countsByYear W20930766022013 @default.
- W2093076602 countsByYear W20930766022014 @default.
- W2093076602 countsByYear W20930766022015 @default.
- W2093076602 countsByYear W20930766022016 @default.
- W2093076602 countsByYear W20930766022017 @default.
- W2093076602 countsByYear W20930766022018 @default.
- W2093076602 countsByYear W20930766022019 @default.
- W2093076602 countsByYear W20930766022020 @default.
- W2093076602 countsByYear W20930766022022 @default.
- W2093076602 countsByYear W20930766022023 @default.
- W2093076602 crossrefType "journal-article" @default.
- W2093076602 hasAuthorship W2093076602A5005227632 @default.
- W2093076602 hasAuthorship W2093076602A5015668818 @default.
- W2093076602 hasConcept C104114177 @default.
- W2093076602 hasConcept C111368507 @default.
- W2093076602 hasConcept C114793014 @default.
- W2093076602 hasConcept C127313418 @default.
- W2093076602 hasConcept C13280743 @default.
- W2093076602 hasConcept C151730666 @default.
- W2093076602 hasConcept C152382732 @default.
- W2093076602 hasConcept C154945302 @default.
- W2093076602 hasConcept C164139821 @default.
- W2093076602 hasConcept C165205528 @default.
- W2093076602 hasConcept C41008148 @default.
- W2093076602 hasConceptScore W2093076602C104114177 @default.
- W2093076602 hasConceptScore W2093076602C111368507 @default.
- W2093076602 hasConceptScore W2093076602C114793014 @default.
- W2093076602 hasConceptScore W2093076602C127313418 @default.
- W2093076602 hasConceptScore W2093076602C13280743 @default.
- W2093076602 hasConceptScore W2093076602C151730666 @default.
- W2093076602 hasConceptScore W2093076602C152382732 @default.
- W2093076602 hasConceptScore W2093076602C154945302 @default.
- W2093076602 hasConceptScore W2093076602C164139821 @default.
- W2093076602 hasConceptScore W2093076602C165205528 @default.
- W2093076602 hasConceptScore W2093076602C41008148 @default.
- W2093076602 hasLocation W20930766021 @default.
- W2093076602 hasOpenAccess W2093076602 @default.
- W2093076602 hasPrimaryLocation W20930766021 @default.
- W2093076602 hasRelatedWork W1593852965 @default.
- W2093076602 hasRelatedWork W2002719700 @default.
- W2093076602 hasRelatedWork W2029274172 @default.
- W2093076602 hasRelatedWork W2087280628 @default.
- W2093076602 hasRelatedWork W2089109604 @default.
- W2093076602 hasRelatedWork W2094574326 @default.
- W2093076602 hasRelatedWork W2169954187 @default.
- W2093076602 hasRelatedWork W2221598841 @default.
- W2093076602 hasRelatedWork W2554280934 @default.
- W2093076602 hasRelatedWork W4310623430 @default.
- W2093076602 hasVolume "151-152" @default.