Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093103229> ?p ?o ?g. }
- W2093103229 abstract "Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Press' Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed overall classification accuracy above a median value of 0.63, but for most sensitivity was around or even lower than a median value of 0.5. When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing." @default.
- W2093103229 created "2016-06-24" @default.
- W2093103229 creator A5000312904 @default.
- W2093103229 creator A5010712032 @default.
- W2093103229 creator A5028142678 @default.
- W2093103229 creator A5051672640 @default.
- W2093103229 creator A5060131002 @default.
- W2093103229 creator A5061041276 @default.
- W2093103229 date "2011-08-17" @default.
- W2093103229 modified "2023-10-10" @default.
- W2093103229 title "Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests" @default.
- W2093103229 cites W1571694585 @default.
- W2093103229 cites W1768257245 @default.
- W2093103229 cites W1810343284 @default.
- W2093103229 cites W1967049390 @default.
- W2093103229 cites W1970088462 @default.
- W2093103229 cites W1971076990 @default.
- W2093103229 cites W1982431702 @default.
- W2093103229 cites W1987950494 @default.
- W2093103229 cites W1991426267 @default.
- W2093103229 cites W1993570039 @default.
- W2093103229 cites W1994450809 @default.
- W2093103229 cites W2001619934 @default.
- W2093103229 cites W2002645541 @default.
- W2093103229 cites W2014886338 @default.
- W2093103229 cites W2019969379 @default.
- W2093103229 cites W2036255459 @default.
- W2093103229 cites W2038094994 @default.
- W2093103229 cites W2044734436 @default.
- W2093103229 cites W2053232936 @default.
- W2093103229 cites W2069014477 @default.
- W2093103229 cites W2071379517 @default.
- W2093103229 cites W2074840499 @default.
- W2093103229 cites W2076723282 @default.
- W2093103229 cites W2078618444 @default.
- W2093103229 cites W2084591348 @default.
- W2093103229 cites W2090578816 @default.
- W2093103229 cites W2092685533 @default.
- W2093103229 cites W2097745317 @default.
- W2093103229 cites W2102211300 @default.
- W2093103229 cites W2102757269 @default.
- W2093103229 cites W2106076952 @default.
- W2093103229 cites W2106931873 @default.
- W2093103229 cites W2124386567 @default.
- W2093103229 cites W2128938428 @default.
- W2093103229 cites W2137732937 @default.
- W2093103229 cites W2139212933 @default.
- W2093103229 cites W2142181701 @default.
- W2093103229 cites W2147258050 @default.
- W2093103229 cites W2153476503 @default.
- W2093103229 cites W2153631628 @default.
- W2093103229 cites W2161349318 @default.
- W2093103229 cites W2170240781 @default.
- W2093103229 cites W2325393651 @default.
- W2093103229 cites W245047366 @default.
- W2093103229 cites W2999850990 @default.
- W2093103229 cites W4240276118 @default.
- W2093103229 cites W4299689471 @default.
- W2093103229 doi "https://doi.org/10.1186/1756-0500-4-299" @default.
- W2093103229 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3180705" @default.
- W2093103229 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21849043" @default.
- W2093103229 hasPublicationYear "2011" @default.
- W2093103229 type Work @default.
- W2093103229 sameAs 2093103229 @default.
- W2093103229 citedByCount "290" @default.
- W2093103229 countsByYear W20931032292012 @default.
- W2093103229 countsByYear W20931032292013 @default.
- W2093103229 countsByYear W20931032292014 @default.
- W2093103229 countsByYear W20931032292015 @default.
- W2093103229 countsByYear W20931032292016 @default.
- W2093103229 countsByYear W20931032292017 @default.
- W2093103229 countsByYear W20931032292018 @default.
- W2093103229 countsByYear W20931032292019 @default.
- W2093103229 countsByYear W20931032292020 @default.
- W2093103229 countsByYear W20931032292021 @default.
- W2093103229 countsByYear W20931032292022 @default.
- W2093103229 countsByYear W20931032292023 @default.
- W2093103229 crossrefType "journal-article" @default.
- W2093103229 hasAuthorship W2093103229A5000312904 @default.
- W2093103229 hasAuthorship W2093103229A5010712032 @default.
- W2093103229 hasAuthorship W2093103229A5028142678 @default.
- W2093103229 hasAuthorship W2093103229A5051672640 @default.
- W2093103229 hasAuthorship W2093103229A5060131002 @default.
- W2093103229 hasAuthorship W2093103229A5061041276 @default.
- W2093103229 hasBestOaLocation W20931032291 @default.
- W2093103229 hasConcept C105795698 @default.
- W2093103229 hasConcept C119857082 @default.
- W2093103229 hasConcept C12267149 @default.
- W2093103229 hasConcept C127413603 @default.
- W2093103229 hasConcept C142724271 @default.
- W2093103229 hasConcept C151956035 @default.
- W2093103229 hasConcept C153180895 @default.
- W2093103229 hasConcept C154945302 @default.
- W2093103229 hasConcept C16023879 @default.
- W2093103229 hasConcept C169258074 @default.
- W2093103229 hasConcept C179717631 @default.
- W2093103229 hasConcept C21200559 @default.
- W2093103229 hasConcept C24326235 @default.
- W2093103229 hasConcept C2779134260 @default.
- W2093103229 hasConcept C2779483572 @default.