Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093150745> ?p ?o ?g. }
- W2093150745 endingPage "3132" @default.
- W2093150745 startingPage "3112" @default.
- W2093150745 abstract "The surface infrared reflectance spectra of Mo(100)-p(1ifmmodetimeselsetexttimesfi{}1)H and W(100)-p(1ifmmodetimeselsetexttimesfi{}1)H are both characterized by two vibrational absorptions in the 800--4000-${mathrm{cm}}^{mathrm{ensuremath{-}}1}$ region---a broad band at 1016 ${mathrm{cm}}^{mathrm{ensuremath{-}}1}$ at T=100 K for H on Mo(100) and at 1069 ${mathrm{cm}}^{mathrm{ensuremath{-}}1}$ at T=300 K for H on W(100), corresponding to the symmetric stretch (${ensuremath{nu}}_{1}$), and a narrow derivative-like feature at 1302 ${mathrm{cm}}^{mathrm{ensuremath{-}}1}$ on Mo(100) and at 1269 ${mathrm{cm}}^{mathrm{ensuremath{-}}1}$ on W(100), identified as the first overtone of the wag motion (2${ensuremath{nu}}_{2}$). The physical origin of the line shapes, as well as the larger intensity of the 2${ensuremath{nu}}_{2}$ than expected from adiabatic considerations, were investigated through phenomenological line-shape analysis of data obtained as a function of temperature and relative H/D and H/CO coadsorption concentrations. Inhomogeneous broadening is negligible, and dephasing processes contribute weakly to both ${ensuremath{nu}}_{1}$ and 2${ensuremath{nu}}_{2}$ linewidths. The most distinctive feature of the spectra, the derivative or ``Fano shape'' of 2${ensuremath{nu}}_{2}$, arises from a nonadiabatic coupling between the sharp 2${ensuremath{nu}}_{2}$ vibration and the continuum absorption due to surface electronic transitions. The asymmetry parameter ensuremath{nu}${ifmmode tilde{}else ~{}fi{}}_{0}$ensuremath{tau}ifmmode tilde{}else ~{}fi{}, which gauges the 2${ensuremath{nu}}_{2}$-continuum coupling strength, is temperature insensitive and does not exhibit an isotopic dependence, as predicted for a strong breakdown of adiabaticity. The narrow linewidths observed for 2${ensuremath{nu}}_{2}$ on both surfaces at T=100 K, 12.2 ${mathrm{cm}}^{mathrm{ensuremath{-}}1}$ on Mo(100) and 18.5 ${mathrm{cm}}^{mathrm{ensuremath{-}}1}$ on W(100), set a limit on the lifetime of these vibrational levels at ${T}_{1}$ensuremath{ge}0.9 ps and ${T}_{1}$ensuremath{ge}0.6 ps, respectively.Direct evidence for the electronic excitation continuum that interacts with 2${ensuremath{nu}}_{2}$ is obtained by analyzing changes in broadband reflectivity measurements on W(100)/H and Mo(100)/H as a function of coverage. Both H-saturated surfaces exhibit a strong absorption with x-y symmetry that can be related to optical excitation of surface states. Further support for surface-state participation in the nonadiabatic process is inferred from the strong attenuation of the 2${ensuremath{nu}}_{2}$ intensity upon CO co-adsorption." @default.
- W2093150745 created "2016-06-24" @default.
- W2093150745 creator A5029558840 @default.
- W2093150745 creator A5051239060 @default.
- W2093150745 creator A5055810736 @default.
- W2093150745 date "1988-08-15" @default.
- W2093150745 modified "2023-09-24" @default.
- W2093150745 title "Coupling of H vibration to substrate electronic states in Mo(100)-<i>p</i>(1×1)H and W(100)-<i>p</i>(1×1)H: Example of strong breakdown of adiabaticity" @default.
- W2093150745 cites W1651499848 @default.
- W2093150745 cites W1963762468 @default.
- W2093150745 cites W1967654160 @default.
- W2093150745 cites W1972880958 @default.
- W2093150745 cites W1974832935 @default.
- W2093150745 cites W1975793553 @default.
- W2093150745 cites W1976314729 @default.
- W2093150745 cites W1978077704 @default.
- W2093150745 cites W1979166042 @default.
- W2093150745 cites W1979885326 @default.
- W2093150745 cites W1983578255 @default.
- W2093150745 cites W1985948264 @default.
- W2093150745 cites W1986645827 @default.
- W2093150745 cites W1987508766 @default.
- W2093150745 cites W1990643250 @default.
- W2093150745 cites W1992303381 @default.
- W2093150745 cites W1993474785 @default.
- W2093150745 cites W1994565213 @default.
- W2093150745 cites W1997490387 @default.
- W2093150745 cites W1997935362 @default.
- W2093150745 cites W2000283118 @default.
- W2093150745 cites W2001622632 @default.
- W2093150745 cites W2002260048 @default.
- W2093150745 cites W2004236775 @default.
- W2093150745 cites W2010546847 @default.
- W2093150745 cites W2010766880 @default.
- W2093150745 cites W2011035509 @default.
- W2093150745 cites W2011106623 @default.
- W2093150745 cites W2011569183 @default.
- W2093150745 cites W2011767574 @default.
- W2093150745 cites W2013125835 @default.
- W2093150745 cites W2015438899 @default.
- W2093150745 cites W2017042176 @default.
- W2093150745 cites W2018847576 @default.
- W2093150745 cites W2021880398 @default.
- W2093150745 cites W2023347065 @default.
- W2093150745 cites W2026970388 @default.
- W2093150745 cites W2027470335 @default.
- W2093150745 cites W2028712091 @default.
- W2093150745 cites W2032725785 @default.
- W2093150745 cites W2033638677 @default.
- W2093150745 cites W2035785568 @default.
- W2093150745 cites W2039306834 @default.
- W2093150745 cites W2048982369 @default.
- W2093150745 cites W2050067373 @default.
- W2093150745 cites W2050983452 @default.
- W2093150745 cites W2052054672 @default.
- W2093150745 cites W2058024394 @default.
- W2093150745 cites W2062921100 @default.
- W2093150745 cites W2066398630 @default.
- W2093150745 cites W2071527999 @default.
- W2093150745 cites W2072202730 @default.
- W2093150745 cites W2079448633 @default.
- W2093150745 cites W2080153713 @default.
- W2093150745 cites W2085294512 @default.
- W2093150745 cites W2086571673 @default.
- W2093150745 cites W2087847119 @default.
- W2093150745 cites W2088191675 @default.
- W2093150745 cites W2089900162 @default.
- W2093150745 cites W2089966448 @default.
- W2093150745 cites W2092895262 @default.
- W2093150745 cites W2119629591 @default.
- W2093150745 cites W2149087497 @default.
- W2093150745 cites W2161878403 @default.
- W2093150745 cites W2222517232 @default.
- W2093150745 cites W2325767089 @default.
- W2093150745 doi "https://doi.org/10.1103/physrevb.38.3112" @default.
- W2093150745 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9946651" @default.
- W2093150745 hasPublicationYear "1988" @default.
- W2093150745 type Work @default.
- W2093150745 sameAs 2093150745 @default.
- W2093150745 citedByCount "89" @default.
- W2093150745 countsByYear W20931507452012 @default.
- W2093150745 countsByYear W20931507452013 @default.
- W2093150745 countsByYear W20931507452014 @default.
- W2093150745 countsByYear W20931507452016 @default.
- W2093150745 countsByYear W20931507452018 @default.
- W2093150745 countsByYear W20931507452020 @default.
- W2093150745 countsByYear W20931507452021 @default.
- W2093150745 crossrefType "journal-article" @default.
- W2093150745 hasAuthorship W2093150745A5029558840 @default.
- W2093150745 hasAuthorship W2093150745A5051239060 @default.
- W2093150745 hasAuthorship W2093150745A5055810736 @default.
- W2093150745 hasConcept C121332964 @default.
- W2093150745 hasConcept C131584629 @default.
- W2093150745 hasConcept C184779094 @default.
- W2093150745 hasConcept C185592680 @default.
- W2093150745 hasConcept C191897082 @default.
- W2093150745 hasConcept C192562407 @default.
- W2093150745 hasConcept C4839761 @default.