Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093159738> ?p ?o ?g. }
- W2093159738 endingPage "1862" @default.
- W2093159738 startingPage "1849" @default.
- W2093159738 abstract "Data-driven machine-learning techniques enable the modeling and interpretation of complex physiological signals. The energy consumption of these techniques, however, can be excessive, due to the complexity of the models required. In this paper, we study the tradeoffs and limitations imposed by the energy consumption of high-order detection models implemented in devices designed for intelligent biomedical sensing. Based on the flexibility and efficiency needs at various processing stages in data-driven biomedical algorithms, we explore options for hardware specialization through architectures based on custom instruction and coprocessor computations. We identify the limitations in the former, and propose a coprocessor-based platform that exploits parallelism in computation as well as voltage scaling to operate at a subthreshold minimum-energy point. We present results from post-layout simulation of cardiac arrhythmia detection with patient data from the MIT-BIH database. After wavelet-based feature extraction, which consumes 12.28 μJ, we demonstrate classification computations in the 12.00-120.05 μJ range using 10000-100000 support vectors. This represents 1170× lower energy than that of a low-power processor with custom instructions alone. After morphological feature extraction, which consumes 8.65 μJ of energy, the corresponding energy numbers are 10.24-24.51 μJ, which is 1548× smaller than one based on a custom-instruction design. Results correspond to V <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>dd</sub> =0.4 V and a data precision of 8 b." @default.
- W2093159738 created "2016-06-24" @default.
- W2093159738 creator A5036267240 @default.
- W2093159738 creator A5080585392 @default.
- W2093159738 creator A5086131079 @default.
- W2093159738 date "2013-10-01" @default.
- W2093159738 modified "2023-10-18" @default.
- W2093159738 title "Algorithm-Driven Architectural Design Space Exploration of Domain-Specific Medical-Sensor Processors" @default.
- W2093159738 cites W1990457819 @default.
- W2093159738 cites W1990800384 @default.
- W2093159738 cites W1998322473 @default.
- W2093159738 cites W2000517052 @default.
- W2093159738 cites W2000909451 @default.
- W2093159738 cites W2001573994 @default.
- W2093159738 cites W2004615192 @default.
- W2093159738 cites W2017216250 @default.
- W2093159738 cites W2019714160 @default.
- W2093159738 cites W2029503776 @default.
- W2093159738 cites W2040709089 @default.
- W2093159738 cites W2073299367 @default.
- W2093159738 cites W2096948332 @default.
- W2093159738 cites W2098740348 @default.
- W2093159738 cites W2103308415 @default.
- W2093159738 cites W2104787607 @default.
- W2093159738 cites W2106050980 @default.
- W2093159738 cites W2106063421 @default.
- W2093159738 cites W2106855746 @default.
- W2093159738 cites W2110154445 @default.
- W2093159738 cites W2111420672 @default.
- W2093159738 cites W2122708981 @default.
- W2093159738 cites W2141516641 @default.
- W2093159738 cites W2145044818 @default.
- W2093159738 cites W2147571880 @default.
- W2093159738 cites W2149375345 @default.
- W2093159738 cites W2150950687 @default.
- W2093159738 cites W2155190990 @default.
- W2093159738 cites W2155246454 @default.
- W2093159738 cites W2159283580 @default.
- W2093159738 cites W2161238936 @default.
- W2093159738 cites W2162273778 @default.
- W2093159738 cites W2162753472 @default.
- W2093159738 cites W2168350974 @default.
- W2093159738 cites W2168691138 @default.
- W2093159738 cites W2169533318 @default.
- W2093159738 cites W2196404391 @default.
- W2093159738 cites W3149615542 @default.
- W2093159738 cites W4240072236 @default.
- W2093159738 doi "https://doi.org/10.1109/tvlsi.2012.2220161" @default.
- W2093159738 hasPublicationYear "2013" @default.
- W2093159738 type Work @default.
- W2093159738 sameAs 2093159738 @default.
- W2093159738 citedByCount "12" @default.
- W2093159738 countsByYear W20931597382014 @default.
- W2093159738 countsByYear W20931597382015 @default.
- W2093159738 countsByYear W20931597382016 @default.
- W2093159738 countsByYear W20931597382017 @default.
- W2093159738 countsByYear W20931597382018 @default.
- W2093159738 countsByYear W20931597382020 @default.
- W2093159738 countsByYear W20931597382021 @default.
- W2093159738 crossrefType "journal-article" @default.
- W2093159738 hasAuthorship W2093159738A5036267240 @default.
- W2093159738 hasAuthorship W2093159738A5080585392 @default.
- W2093159738 hasAuthorship W2093159738A5086131079 @default.
- W2093159738 hasConcept C105795698 @default.
- W2093159738 hasConcept C113775141 @default.
- W2093159738 hasConcept C11413529 @default.
- W2093159738 hasConcept C119599485 @default.
- W2093159738 hasConcept C127413603 @default.
- W2093159738 hasConcept C149635348 @default.
- W2093159738 hasConcept C154945302 @default.
- W2093159738 hasConcept C173608175 @default.
- W2093159738 hasConcept C186370098 @default.
- W2093159738 hasConcept C2776221188 @default.
- W2093159738 hasConcept C2780165032 @default.
- W2093159738 hasConcept C33923547 @default.
- W2093159738 hasConcept C41008148 @default.
- W2093159738 hasConcept C45374587 @default.
- W2093159738 hasConcept C52622490 @default.
- W2093159738 hasConcept C86111242 @default.
- W2093159738 hasConcept C9390403 @default.
- W2093159738 hasConceptScore W2093159738C105795698 @default.
- W2093159738 hasConceptScore W2093159738C113775141 @default.
- W2093159738 hasConceptScore W2093159738C11413529 @default.
- W2093159738 hasConceptScore W2093159738C119599485 @default.
- W2093159738 hasConceptScore W2093159738C127413603 @default.
- W2093159738 hasConceptScore W2093159738C149635348 @default.
- W2093159738 hasConceptScore W2093159738C154945302 @default.
- W2093159738 hasConceptScore W2093159738C173608175 @default.
- W2093159738 hasConceptScore W2093159738C186370098 @default.
- W2093159738 hasConceptScore W2093159738C2776221188 @default.
- W2093159738 hasConceptScore W2093159738C2780165032 @default.
- W2093159738 hasConceptScore W2093159738C33923547 @default.
- W2093159738 hasConceptScore W2093159738C41008148 @default.
- W2093159738 hasConceptScore W2093159738C45374587 @default.
- W2093159738 hasConceptScore W2093159738C52622490 @default.
- W2093159738 hasConceptScore W2093159738C86111242 @default.
- W2093159738 hasConceptScore W2093159738C9390403 @default.
- W2093159738 hasIssue "10" @default.