Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093271036> ?p ?o ?g. }
- W2093271036 endingPage "501" @default.
- W2093271036 startingPage "464" @default.
- W2093271036 abstract "In this paper we present a numerical method for solving elliptic equations in an arbitrary domain (described by a level-set function) with general boundary conditions (Dirichlet, Neumann, Robin, etc.) on Cartesian grids, using finite difference discretization and non-eliminated ghost values. A system of Ni+Ng equations in Ni+Ng unknowns is obtained by finite difference discretization on the Ni internal grid points, and second order interpolation to define the conditions for the Ng ghost values. The resulting large sparse linear system is then solved by a multigrid technique. The novelty of the papers can be summarized as follows: general strategy to discretize the boundary condition to second order both in the solution and its gradient; a relaxation of inner equations and boundary conditions by a fictitious time method, inspired by the stability conditions related to the associated time dependent problem (with a convergence proof for the first order scheme); an effective geometric multigrid, which maintains the structure of the discrete system at all grid levels. It is shown that by increasing the relaxation step of the equations associated to the boundary conditions, a convergence factor close to the optimal one is obtained. Several numerical tests, including variable coefficients, anisotropic elliptic equations, and domains with kinks, show the robustness, efficiency and accuracy of the approach." @default.
- W2093271036 created "2016-06-24" @default.
- W2093271036 creator A5037976295 @default.
- W2093271036 creator A5050725909 @default.
- W2093271036 date "2013-05-01" @default.
- W2093271036 modified "2023-10-11" @default.
- W2093271036 title "Finite-difference ghost-point multigrid methods on Cartesian grids for elliptic problems in arbitrary domains" @default.
- W2093271036 cites W1967764272 @default.
- W2093271036 cites W1970950480 @default.
- W2093271036 cites W1971960215 @default.
- W2093271036 cites W1974077361 @default.
- W2093271036 cites W1976115257 @default.
- W2093271036 cites W1986414304 @default.
- W2093271036 cites W1989005711 @default.
- W2093271036 cites W1989445159 @default.
- W2093271036 cites W1993371992 @default.
- W2093271036 cites W1998009943 @default.
- W2093271036 cites W1998883579 @default.
- W2093271036 cites W1999413587 @default.
- W2093271036 cites W2015058476 @default.
- W2093271036 cites W2017868916 @default.
- W2093271036 cites W202241982 @default.
- W2093271036 cites W2029424486 @default.
- W2093271036 cites W2029495360 @default.
- W2093271036 cites W2033160387 @default.
- W2093271036 cites W2042943328 @default.
- W2093271036 cites W2045545335 @default.
- W2093271036 cites W2045618004 @default.
- W2093271036 cites W2048367444 @default.
- W2093271036 cites W2049856588 @default.
- W2093271036 cites W2054320306 @default.
- W2093271036 cites W2058848057 @default.
- W2093271036 cites W2067216123 @default.
- W2093271036 cites W2069267589 @default.
- W2093271036 cites W2071925186 @default.
- W2093271036 cites W2076077791 @default.
- W2093271036 cites W2078310966 @default.
- W2093271036 cites W2080285905 @default.
- W2093271036 cites W2087852658 @default.
- W2093271036 cites W2093012115 @default.
- W2093271036 cites W2093050390 @default.
- W2093271036 cites W2095006601 @default.
- W2093271036 cites W2095539128 @default.
- W2093271036 cites W2104650435 @default.
- W2093271036 cites W2108403887 @default.
- W2093271036 cites W2113251641 @default.
- W2093271036 cites W2116164205 @default.
- W2093271036 cites W2119133219 @default.
- W2093271036 cites W2119315866 @default.
- W2093271036 cites W2119611099 @default.
- W2093271036 cites W2126094611 @default.
- W2093271036 cites W2126950425 @default.
- W2093271036 cites W2127265832 @default.
- W2093271036 cites W2141613219 @default.
- W2093271036 cites W2155704971 @default.
- W2093271036 cites W2172093368 @default.
- W2093271036 cites W2314156868 @default.
- W2093271036 cites W2314468014 @default.
- W2093271036 cites W2332043763 @default.
- W2093271036 cites W4237874768 @default.
- W2093271036 doi "https://doi.org/10.1016/j.jcp.2012.11.047" @default.
- W2093271036 hasPublicationYear "2013" @default.
- W2093271036 type Work @default.
- W2093271036 sameAs 2093271036 @default.
- W2093271036 citedByCount "53" @default.
- W2093271036 countsByYear W20932710362014 @default.
- W2093271036 countsByYear W20932710362015 @default.
- W2093271036 countsByYear W20932710362016 @default.
- W2093271036 countsByYear W20932710362017 @default.
- W2093271036 countsByYear W20932710362018 @default.
- W2093271036 countsByYear W20932710362019 @default.
- W2093271036 countsByYear W20932710362020 @default.
- W2093271036 countsByYear W20932710362021 @default.
- W2093271036 countsByYear W20932710362022 @default.
- W2093271036 countsByYear W20932710362023 @default.
- W2093271036 crossrefType "journal-article" @default.
- W2093271036 hasAuthorship W2093271036A5037976295 @default.
- W2093271036 hasAuthorship W2093271036A5050725909 @default.
- W2093271036 hasConcept C104317684 @default.
- W2093271036 hasConcept C134306372 @default.
- W2093271036 hasConcept C137119250 @default.
- W2093271036 hasConcept C15744967 @default.
- W2093271036 hasConcept C16038011 @default.
- W2093271036 hasConcept C182310444 @default.
- W2093271036 hasConcept C185592680 @default.
- W2093271036 hasConcept C205951836 @default.
- W2093271036 hasConcept C2524010 @default.
- W2093271036 hasConcept C2776029896 @default.
- W2093271036 hasConcept C28826006 @default.
- W2093271036 hasConcept C33923547 @default.
- W2093271036 hasConcept C55493867 @default.
- W2093271036 hasConcept C63479239 @default.
- W2093271036 hasConcept C73000952 @default.
- W2093271036 hasConcept C77805123 @default.
- W2093271036 hasConcept C93779851 @default.
- W2093271036 hasConceptScore W2093271036C104317684 @default.
- W2093271036 hasConceptScore W2093271036C134306372 @default.
- W2093271036 hasConceptScore W2093271036C137119250 @default.