Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093273670> ?p ?o ?g. }
- W2093273670 endingPage "150" @default.
- W2093273670 startingPage "141" @default.
- W2093273670 abstract "Abstract Extreme daily precipitation events are involved in significant environmental damages, even in life loss, because of causing adverse impacts, such as flash floods, in urban and sometimes in rural areas. Thus, long-term forecast of such events is of great importance for the preparation of local authorities in order to confront and mitigate the adverse consequences. The objective of this study is to estimate the possibility of forecasting the maximum daily precipitation for the next coming year. For this reason, appropriate prognostic models, such as Artificial Neural Networks (ANNs) were developed and applied. The data used for the analysis concern annual maximum daily precipitation totals, which have been recorded at the National Observatory of Athens (NOA), during the long term period 1891–2009. To evaluate the potential of daily extreme precipitation forecast by the applied ANNs, a different period for validation was considered than the one used for the ANNs training. Thus, the datasets of the period 1891–1980 were used as training datasets, while the datasets of the period 1981–2009 as validation datasets. Appropriate statistical indices, such as the coefficient of determination (R 2 ), the index of agreement (IA), the Root Mean Square Error (RMSE) and the Mean Bias Error (MBE), were applied to test the reliability of the models. The findings of the analysis showed that, a quite satisfactory relationship (R 2 = 0.482, IA = 0.817, RMSE = 16.4 mm and MBE = + 5.2 mm) appears between the forecasted and the respective observed maximum daily precipitation totals one year ahead. The developed ANN seems to overestimate the maximum daily precipitation totals appeared in 1988 while underestimate the maximum in 1999, which could be attributed to the relatively low frequency of occurrence of these extreme events within GAA having impact on the optimum training of ANN." @default.
- W2093273670 created "2016-06-24" @default.
- W2093273670 creator A5020889336 @default.
- W2093273670 creator A5023485378 @default.
- W2093273670 creator A5030371229 @default.
- W2093273670 creator A5043286843 @default.
- W2093273670 creator A5063601302 @default.
- W2093273670 date "2014-07-01" @default.
- W2093273670 modified "2023-09-25" @default.
- W2093273670 title "Artificial neural networks modeling for forecasting the maximum daily total precipitation at Athens, Greece" @default.
- W2093273670 cites W1527803616 @default.
- W2093273670 cites W1610130559 @default.
- W2093273670 cites W1640621923 @default.
- W2093273670 cites W1914604194 @default.
- W2093273670 cites W1965865351 @default.
- W2093273670 cites W1966919913 @default.
- W2093273670 cites W1967509530 @default.
- W2093273670 cites W1968957721 @default.
- W2093273670 cites W1972188010 @default.
- W2093273670 cites W1977669764 @default.
- W2093273670 cites W1978102254 @default.
- W2093273670 cites W1981402026 @default.
- W2093273670 cites W1987358338 @default.
- W2093273670 cites W1994761805 @default.
- W2093273670 cites W2003909086 @default.
- W2093273670 cites W2008505918 @default.
- W2093273670 cites W2009964667 @default.
- W2093273670 cites W2012272234 @default.
- W2093273670 cites W2014202046 @default.
- W2093273670 cites W2017669193 @default.
- W2093273670 cites W2018270410 @default.
- W2093273670 cites W2038917393 @default.
- W2093273670 cites W2041178263 @default.
- W2093273670 cites W2044829309 @default.
- W2093273670 cites W2047884674 @default.
- W2093273670 cites W2051983560 @default.
- W2093273670 cites W2054604854 @default.
- W2093273670 cites W2058945726 @default.
- W2093273670 cites W2060677109 @default.
- W2093273670 cites W2060929823 @default.
- W2093273670 cites W2064370107 @default.
- W2093273670 cites W2072198250 @default.
- W2093273670 cites W2090759099 @default.
- W2093273670 cites W2095209909 @default.
- W2093273670 cites W2102479878 @default.
- W2093273670 cites W2102588958 @default.
- W2093273670 cites W2110660520 @default.
- W2093273670 cites W2125848133 @default.
- W2093273670 cites W2126111550 @default.
- W2093273670 cites W2132164814 @default.
- W2093273670 cites W2140893716 @default.
- W2093273670 cites W2147746661 @default.
- W2093273670 cites W2162218186 @default.
- W2093273670 cites W2171692085 @default.
- W2093273670 cites W2176929435 @default.
- W2093273670 cites W2314968573 @default.
- W2093273670 cites W4213365210 @default.
- W2093273670 cites W4243999944 @default.
- W2093273670 doi "https://doi.org/10.1016/j.atmosres.2013.11.013" @default.
- W2093273670 hasPublicationYear "2014" @default.
- W2093273670 type Work @default.
- W2093273670 sameAs 2093273670 @default.
- W2093273670 citedByCount "65" @default.
- W2093273670 countsByYear W20932736702014 @default.
- W2093273670 countsByYear W20932736702015 @default.
- W2093273670 countsByYear W20932736702016 @default.
- W2093273670 countsByYear W20932736702017 @default.
- W2093273670 countsByYear W20932736702018 @default.
- W2093273670 countsByYear W20932736702019 @default.
- W2093273670 countsByYear W20932736702020 @default.
- W2093273670 countsByYear W20932736702021 @default.
- W2093273670 countsByYear W20932736702023 @default.
- W2093273670 crossrefType "journal-article" @default.
- W2093273670 hasAuthorship W2093273670A5020889336 @default.
- W2093273670 hasAuthorship W2093273670A5023485378 @default.
- W2093273670 hasAuthorship W2093273670A5030371229 @default.
- W2093273670 hasAuthorship W2093273670A5043286843 @default.
- W2093273670 hasAuthorship W2093273670A5063601302 @default.
- W2093273670 hasConcept C107054158 @default.
- W2093273670 hasConcept C127313418 @default.
- W2093273670 hasConcept C153294291 @default.
- W2093273670 hasConcept C154945302 @default.
- W2093273670 hasConcept C205649164 @default.
- W2093273670 hasConcept C39432304 @default.
- W2093273670 hasConcept C41008148 @default.
- W2093273670 hasConcept C49204034 @default.
- W2093273670 hasConcept C50644808 @default.
- W2093273670 hasConceptScore W2093273670C107054158 @default.
- W2093273670 hasConceptScore W2093273670C127313418 @default.
- W2093273670 hasConceptScore W2093273670C153294291 @default.
- W2093273670 hasConceptScore W2093273670C154945302 @default.
- W2093273670 hasConceptScore W2093273670C205649164 @default.
- W2093273670 hasConceptScore W2093273670C39432304 @default.
- W2093273670 hasConceptScore W2093273670C41008148 @default.
- W2093273670 hasConceptScore W2093273670C49204034 @default.
- W2093273670 hasConceptScore W2093273670C50644808 @default.
- W2093273670 hasLocation W20932736701 @default.
- W2093273670 hasOpenAccess W2093273670 @default.