Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093278462> ?p ?o ?g. }
- W2093278462 abstract "We derive quantum kinetic equations from a quantum field theory implementing a diagrammatic perturbative expansion improved by a resummation via the dynamical renormalization group. The method begins by obtaining the equation of motion of the distribution function in perturbation theory. The solution of this equation of motion reveals secular terms that grow in time; the dynamical renormalization group resums these secular terms in real time and leads directly to the quantum kinetic equation. This method allows us to include consistently medium effects via resummations akin to hard thermal loops but away from equilibrium. A close relationship between this approach and the renormalization group in Euclidean field theory is established. In particular, coarse graining, stationary solutions, the relaxation time approximation, and relaxation rates have a natural parallel as irrelevant operators, fixed points, linearization, and stability exponents in the Euclidean renormalization group, respectively. We used this method to study the relaxation in a cool gas of pions and sigma mesons in the $O(4)$ chiral linear sigma model. We obtain in the relaxation time approximation the pion and sigma meson relaxation rates. We also find that in the large momentum limit emission and absorption of massless pions result in a threshold infrared divergence in the sigma meson relaxation rate and lead to a crossover behavior in relaxation. We then study the relaxation of charged quasiparticles in scalar quantum electrodynamics (SQED). We begin with a gauge invariant description of the distribution function and implement the hard thermal loop resummation for longitudinal and transverse photons as well as for the scalars. While longitudinal, Debye-screened photons lead to purely exponential relaxation, and transverse photons, only dynamically screened by Landau damping, lead to anomalous (nonexponential) relaxation, thus leading to a crossover between two different relaxational regimes. We emphasize that infrared divergent damping rates are indicative of nonexponential relaxation and the dynamical renormalization group reveals the correct relaxation directly in real time. Furthermore the relaxational time scales for charged quasiparticles are similar to those found in QCD in a self-consistent HTL resummation. Finally we also show that this method provides a natural framework to interpret and resolve the issue of pinch singularities out of equilibrium and establish a direct correspondence between pinch singularities and secular terms in time-dependent perturbation theory. We argue that this method is particularly well suited to study quantum kinetics and transport in gauge theories." @default.
- W2093278462 created "2016-06-24" @default.
- W2093278462 creator A5004956421 @default.
- W2093278462 creator A5040562168 @default.
- W2093278462 creator A5056304809 @default.
- W2093278462 date "2000-02-25" @default.
- W2093278462 modified "2023-10-16" @default.
- W2093278462 title "Dynamical renormalization group approach to quantum kinetics in scalar and gauge theories" @default.
- W2093278462 cites W1493243508 @default.
- W2093278462 cites W1537733299 @default.
- W2093278462 cites W1544055352 @default.
- W2093278462 cites W1602599414 @default.
- W2093278462 cites W1965374255 @default.
- W2093278462 cites W1971177656 @default.
- W2093278462 cites W1973112946 @default.
- W2093278462 cites W1974162733 @default.
- W2093278462 cites W1975163186 @default.
- W2093278462 cites W1975985407 @default.
- W2093278462 cites W1978869394 @default.
- W2093278462 cites W1979129987 @default.
- W2093278462 cites W1980083211 @default.
- W2093278462 cites W1980340664 @default.
- W2093278462 cites W1984731248 @default.
- W2093278462 cites W1987779322 @default.
- W2093278462 cites W1987881172 @default.
- W2093278462 cites W1987956025 @default.
- W2093278462 cites W1990668408 @default.
- W2093278462 cites W1993268100 @default.
- W2093278462 cites W1994230933 @default.
- W2093278462 cites W2000808445 @default.
- W2093278462 cites W2003321492 @default.
- W2093278462 cites W2003558381 @default.
- W2093278462 cites W2004196672 @default.
- W2093278462 cites W2005057547 @default.
- W2093278462 cites W2007437316 @default.
- W2093278462 cites W2008755900 @default.
- W2093278462 cites W2009968656 @default.
- W2093278462 cites W2011886598 @default.
- W2093278462 cites W2012590513 @default.
- W2093278462 cites W2012903875 @default.
- W2093278462 cites W2014463782 @default.
- W2093278462 cites W2016724001 @default.
- W2093278462 cites W2023615361 @default.
- W2093278462 cites W2025011777 @default.
- W2093278462 cites W2025446220 @default.
- W2093278462 cites W2030123738 @default.
- W2093278462 cites W2034665323 @default.
- W2093278462 cites W2038202118 @default.
- W2093278462 cites W2039624153 @default.
- W2093278462 cites W2041913736 @default.
- W2093278462 cites W2042124852 @default.
- W2093278462 cites W2043393205 @default.
- W2093278462 cites W2052304311 @default.
- W2093278462 cites W2052784716 @default.
- W2093278462 cites W2055355962 @default.
- W2093278462 cites W2056604715 @default.
- W2093278462 cites W2060917134 @default.
- W2093278462 cites W2063531816 @default.
- W2093278462 cites W2064341500 @default.
- W2093278462 cites W2064396311 @default.
- W2093278462 cites W2066901673 @default.
- W2093278462 cites W2068545508 @default.
- W2093278462 cites W2070280390 @default.
- W2093278462 cites W2071506667 @default.
- W2093278462 cites W2085043700 @default.
- W2093278462 cites W2086683489 @default.
- W2093278462 cites W2093024861 @default.
- W2093278462 cites W2093104364 @default.
- W2093278462 cites W2098388838 @default.
- W2093278462 cites W2111877289 @default.
- W2093278462 cites W2120760841 @default.
- W2093278462 cites W2126349467 @default.
- W2093278462 cites W2138364851 @default.
- W2093278462 cites W2144745584 @default.
- W2093278462 cites W2147427697 @default.
- W2093278462 cites W2148324116 @default.
- W2093278462 cites W2157090811 @default.
- W2093278462 cites W2157211889 @default.
- W2093278462 cites W2157858580 @default.
- W2093278462 cites W2158306076 @default.
- W2093278462 cites W2170287850 @default.
- W2093278462 cites W2210880262 @default.
- W2093278462 cites W2279316440 @default.
- W2093278462 cites W2496369024 @default.
- W2093278462 cites W3021251064 @default.
- W2093278462 cites W3099459454 @default.
- W2093278462 cites W3099799994 @default.
- W2093278462 cites W3100842320 @default.
- W2093278462 cites W3102949071 @default.
- W2093278462 cites W3103830982 @default.
- W2093278462 cites W3104798434 @default.
- W2093278462 cites W3105758593 @default.
- W2093278462 cites W3106392790 @default.
- W2093278462 cites W3121222750 @default.
- W2093278462 cites W4210557146 @default.
- W2093278462 cites W4240316066 @default.
- W2093278462 cites W4298222025 @default.
- W2093278462 cites W4300868157 @default.
- W2093278462 cites W2034884232 @default.
- W2093278462 doi "https://doi.org/10.1103/physrevd.61.065006" @default.