Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093507948> ?p ?o ?g. }
- W2093507948 endingPage "224" @default.
- W2093507948 startingPage "205" @default.
- W2093507948 abstract "Abstract Advances in computation and the fast and cheap computational facilities now available to statisticians have had a significant impact upon statistical research, and especially the development of nonparametric data analysis procedures. In particular, theoretical and applied research on nonparametric density estimation has had a noticeable influence on related topics, such as nonparametric regression, nonparametric discrimination, and nonparametric pattern recognition. This article reviews recent developments in nonparametric density estimation and includes topics that have been omitted from review articles and books on the subject. The early density estimation methods, such as the histogram, kernel estimators, and orthogonal series estimators are still very popular, and recent research on them is described. Different types of restricted maximum likelihood density estimators, including order-restricted estimators, maximum penalized likelihood estimators, and sieve estimators, are discussed, where restrictions are imposed upon the class of densities or on the form of the likelihood function. Nonparametric density estimators that are data-adaptive and lead to locally smoothed estimators are also discussed; these include variable partition histograms, estimators based on statistically equivalent blocks, nearest-neighbor estimators, variable kernel estimators, and adaptive kernel estimators. For the multivariate case, extensions of methods of univariate density estimation are usually straightforward but can be computationally expensive. A method of multivariate density estimation that did not spring from a univariate generalization is described, namely, projection pursuit density estimation, in which both dimensionality reduction and density estimation can be pursued at the same time. Finally, some areas of related research are mentioned, such as nonparametric estimation of functionals of a density, robust parametric estimation, semiparametric models, and density estimation for censored and incomplete data, directional and spherical data, and density estimation for dependent sequences of observations." @default.
- W2093507948 created "2016-06-24" @default.
- W2093507948 creator A5090252826 @default.
- W2093507948 date "1991-03-01" @default.
- W2093507948 modified "2023-10-18" @default.
- W2093507948 title "Review Papers: Recent Developments in Nonparametric Density Estimation" @default.
- W2093507948 cites W116422664 @default.
- W2093507948 cites W130082757 @default.
- W2093507948 cites W1549245336 @default.
- W2093507948 cites W1572299628 @default.
- W2093507948 cites W1581735175 @default.
- W2093507948 cites W1854990296 @default.
- W2093507948 cites W195165020 @default.
- W2093507948 cites W1963801390 @default.
- W2093507948 cites W1964085646 @default.
- W2093507948 cites W1964724001 @default.
- W2093507948 cites W1965136857 @default.
- W2093507948 cites W1965999112 @default.
- W2093507948 cites W1966698631 @default.
- W2093507948 cites W1967158285 @default.
- W2093507948 cites W1967192386 @default.
- W2093507948 cites W1967391933 @default.
- W2093507948 cites W1967632959 @default.
- W2093507948 cites W1968477689 @default.
- W2093507948 cites W1969507337 @default.
- W2093507948 cites W1970074788 @default.
- W2093507948 cites W1970414802 @default.
- W2093507948 cites W1971152913 @default.
- W2093507948 cites W1972574026 @default.
- W2093507948 cites W1974886928 @default.
- W2093507948 cites W1975920192 @default.
- W2093507948 cites W1976094900 @default.
- W2093507948 cites W1976201390 @default.
- W2093507948 cites W1977027889 @default.
- W2093507948 cites W1977957920 @default.
- W2093507948 cites W1979779310 @default.
- W2093507948 cites W1980158700 @default.
- W2093507948 cites W1980861733 @default.
- W2093507948 cites W1982366717 @default.
- W2093507948 cites W1983109794 @default.
- W2093507948 cites W1983993791 @default.
- W2093507948 cites W1984652310 @default.
- W2093507948 cites W1985169668 @default.
- W2093507948 cites W1985649437 @default.
- W2093507948 cites W1985875898 @default.
- W2093507948 cites W1985934881 @default.
- W2093507948 cites W1988568575 @default.
- W2093507948 cites W1989417989 @default.
- W2093507948 cites W1989868360 @default.
- W2093507948 cites W1990686481 @default.
- W2093507948 cites W1991064415 @default.
- W2093507948 cites W1992387042 @default.
- W2093507948 cites W1992635476 @default.
- W2093507948 cites W1995883243 @default.
- W2093507948 cites W1995926088 @default.
- W2093507948 cites W1996735489 @default.
- W2093507948 cites W1997225897 @default.
- W2093507948 cites W1998378660 @default.
- W2093507948 cites W1998770010 @default.
- W2093507948 cites W1998951954 @default.
- W2093507948 cites W2002079082 @default.
- W2093507948 cites W2002221401 @default.
- W2093507948 cites W2002740415 @default.
- W2093507948 cites W2003538991 @default.
- W2093507948 cites W2004026519 @default.
- W2093507948 cites W2004463790 @default.
- W2093507948 cites W2005163397 @default.
- W2093507948 cites W2006257880 @default.
- W2093507948 cites W2006515435 @default.
- W2093507948 cites W2007468371 @default.
- W2093507948 cites W2011597771 @default.
- W2093507948 cites W2012853725 @default.
- W2093507948 cites W2014255551 @default.
- W2093507948 cites W2014268383 @default.
- W2093507948 cites W2015475547 @default.
- W2093507948 cites W2015653505 @default.
- W2093507948 cites W2016576171 @default.
- W2093507948 cites W2017078196 @default.
- W2093507948 cites W2017792954 @default.
- W2093507948 cites W2018330139 @default.
- W2093507948 cites W2018334914 @default.
- W2093507948 cites W2019630042 @default.
- W2093507948 cites W2020914331 @default.
- W2093507948 cites W2020929440 @default.
- W2093507948 cites W2023370137 @default.
- W2093507948 cites W2025335558 @default.
- W2093507948 cites W2025918145 @default.
- W2093507948 cites W2026126531 @default.
- W2093507948 cites W2026246387 @default.
- W2093507948 cites W2027001395 @default.
- W2093507948 cites W2028089712 @default.
- W2093507948 cites W2029450582 @default.
- W2093507948 cites W2031377921 @default.
- W2093507948 cites W2036421173 @default.
- W2093507948 cites W2036654869 @default.
- W2093507948 cites W2037269865 @default.
- W2093507948 cites W2037856063 @default.
- W2093507948 cites W2038941242 @default.