Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093523770> ?p ?o ?g. }
- W2093523770 endingPage "494" @default.
- W2093523770 startingPage "488" @default.
- W2093523770 abstract "Only few examples of transdifferentiation, which denotes the conversion of one differentiated cell type to another [1Okada T. Transdifferentiation: Flexibility in Cell Differentiation. Clarendon Press, Oxford1991Google Scholar], are known to occur during normal development, and more often, it is associated with regeneration processes [2Schmid V. Alder H. Isolated, mononucleated, striated muscle can undergo pluripotent transdifferentiation and form a complex regenerate.Cell. 1984; 38: 801-809Abstract Full Text PDF PubMed Scopus (75) Google Scholar, 3Slack J.M. Metaplasia and transdifferentiation: from pure biology to the clinic.Nat. Rev. Mol. Cell Biol. 2007; 8: 369-378Crossref PubMed Scopus (183) Google Scholar, 4Red-Horse K. Ueno H. Weissman I.L. Krasnow M.A. Coronary arteries form by developmental reprogramming of venous cells.Nature. 2010; 464: 549-553Crossref PubMed Scopus (395) Google Scholar, 5Hajduskova M. Ahier A. Daniele T. Jarriault S. Cell plasticity in Caenorhabditis elegans: from induced to natural cell reprogramming.Genesis. 2012; 50: 1-17Crossref PubMed Scopus (12) Google Scholar, 6Benton J.L. Kery R. Li J. Noonin C. Söderhäll I. Beltz B.S. Cells from the immune system generate adult-born neurons in crayfish.Dev. Cell. 2014; 30: 322-333Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar, 7Fu L. Zhu X. Yi F. Liu G.-H. Izpisua Belmonte J.C. Regenerative medicine: transdifferentiation in vivo.Cell Res. 2014; 24: 141-142Crossref PubMed Scopus (18) Google Scholar]. With respect to muscles, dedifferentiation/redifferentiation processes have been documented during post-traumatic muscle regeneration in blastema of newts as well as during myocardial regeneration [8Milner D. Cameron J. Muscle repair and regeneration: stem cells, scaffolds, and the contributions of skeletal muscle to amphibian limb regeneration.in: New Perspectives in Regeneration. Volume 367. Springer, 2013: 133-159Google Scholar, 9Gemberling M. Bailey T.J. Hyde D.R. Poss K.D. The zebrafish as a model for complex tissue regeneration.Trends Genet. 2013; 29: 611-620Abstract Full Text Full Text PDF PubMed Scopus (332) Google Scholar]. As shown herein, the ventral longitudinal muscles of the adult Drosophila heart arise from specific larval alary muscles in a process that represents the first known example of syncytial muscle transdifferentiation via dedifferentiation into mononucleate myoblasts during normal development. We demonstrate that this unique process depends on the reinitiation of a transcriptional program previously employed for embryonic alary muscle development, in which the factors Org-1 (Drosophila Tbx1) and Tailup (Drosophila Islet1) are key components. During metamorphosis, the action of these factors is combined with cell-autonomous inputs from the ecdysone steroid and the Hox gene Ultrabithorax, which provide temporal and spatial specificity to the transdifferentiation events. Following muscle dedifferentiation, inductive cues, particularly from the remodeling heart tube, are required for the redifferentiation of myoblasts into ventral longitudinal muscles. Our results provide new insights into mechanisms of lineage commitment and cell-fate plasticity during development." @default.
- W2093523770 created "2016-06-24" @default.
- W2093523770 creator A5011597826 @default.
- W2093523770 creator A5012356916 @default.
- W2093523770 creator A5050271587 @default.
- W2093523770 creator A5067564215 @default.
- W2093523770 date "2015-02-01" @default.
- W2093523770 modified "2023-10-16" @default.
- W2093523770 title "Org-1-Dependent Lineage Reprogramming Generates the Ventral Longitudinal Musculature of the Drosophila Heart" @default.
- W2093523770 cites W1768818798 @default.
- W2093523770 cites W1975220197 @default.
- W2093523770 cites W1979159320 @default.
- W2093523770 cites W1983022886 @default.
- W2093523770 cites W1983909978 @default.
- W2093523770 cites W1988257487 @default.
- W2093523770 cites W1990276996 @default.
- W2093523770 cites W1992663358 @default.
- W2093523770 cites W1994648165 @default.
- W2093523770 cites W1998338403 @default.
- W2093523770 cites W1999800789 @default.
- W2093523770 cites W2003653681 @default.
- W2093523770 cites W2003742149 @default.
- W2093523770 cites W2011202006 @default.
- W2093523770 cites W2012463306 @default.
- W2093523770 cites W2030406511 @default.
- W2093523770 cites W2053480435 @default.
- W2093523770 cites W2057845770 @default.
- W2093523770 cites W2058004965 @default.
- W2093523770 cites W2064202227 @default.
- W2093523770 cites W2067738832 @default.
- W2093523770 cites W2074434145 @default.
- W2093523770 cites W2076723745 @default.
- W2093523770 cites W2088772927 @default.
- W2093523770 cites W2089414860 @default.
- W2093523770 cites W2090755234 @default.
- W2093523770 cites W2100860947 @default.
- W2093523770 cites W2111473168 @default.
- W2093523770 cites W2116650844 @default.
- W2093523770 cites W2121920073 @default.
- W2093523770 cites W2122884595 @default.
- W2093523770 cites W2123544339 @default.
- W2093523770 cites W2134421777 @default.
- W2093523770 cites W2150015205 @default.
- W2093523770 cites W2152746599 @default.
- W2093523770 cites W2155287484 @default.
- W2093523770 cites W2156657120 @default.
- W2093523770 cites W2164833592 @default.
- W2093523770 cites W2284631548 @default.
- W2093523770 cites W2285987853 @default.
- W2093523770 cites W2397281151 @default.
- W2093523770 cites W2413581335 @default.
- W2093523770 doi "https://doi.org/10.1016/j.cub.2014.12.029" @default.
- W2093523770 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25660543" @default.
- W2093523770 hasPublicationYear "2015" @default.
- W2093523770 type Work @default.
- W2093523770 sameAs 2093523770 @default.
- W2093523770 citedByCount "31" @default.
- W2093523770 countsByYear W20935237702015 @default.
- W2093523770 countsByYear W20935237702016 @default.
- W2093523770 countsByYear W20935237702017 @default.
- W2093523770 countsByYear W20935237702018 @default.
- W2093523770 countsByYear W20935237702019 @default.
- W2093523770 countsByYear W20935237702020 @default.
- W2093523770 countsByYear W20935237702021 @default.
- W2093523770 countsByYear W20935237702022 @default.
- W2093523770 countsByYear W20935237702023 @default.
- W2093523770 crossrefType "journal-article" @default.
- W2093523770 hasAuthorship W2093523770A5011597826 @default.
- W2093523770 hasAuthorship W2093523770A5012356916 @default.
- W2093523770 hasAuthorship W2093523770A5050271587 @default.
- W2093523770 hasAuthorship W2093523770A5067564215 @default.
- W2093523770 hasBestOaLocation W20935237701 @default.
- W2093523770 hasConcept C104317684 @default.
- W2093523770 hasConcept C105702510 @default.
- W2093523770 hasConcept C107459253 @default.
- W2093523770 hasConcept C145103041 @default.
- W2093523770 hasConcept C1491633281 @default.
- W2093523770 hasConcept C171056886 @default.
- W2093523770 hasConcept C207200792 @default.
- W2093523770 hasConcept C28328180 @default.
- W2093523770 hasConcept C54355233 @default.
- W2093523770 hasConcept C60870556 @default.
- W2093523770 hasConcept C77255625 @default.
- W2093523770 hasConcept C86803240 @default.
- W2093523770 hasConcept C95444343 @default.
- W2093523770 hasConceptScore W2093523770C104317684 @default.
- W2093523770 hasConceptScore W2093523770C105702510 @default.
- W2093523770 hasConceptScore W2093523770C107459253 @default.
- W2093523770 hasConceptScore W2093523770C145103041 @default.
- W2093523770 hasConceptScore W2093523770C1491633281 @default.
- W2093523770 hasConceptScore W2093523770C171056886 @default.
- W2093523770 hasConceptScore W2093523770C207200792 @default.
- W2093523770 hasConceptScore W2093523770C28328180 @default.
- W2093523770 hasConceptScore W2093523770C54355233 @default.
- W2093523770 hasConceptScore W2093523770C60870556 @default.
- W2093523770 hasConceptScore W2093523770C77255625 @default.
- W2093523770 hasConceptScore W2093523770C86803240 @default.
- W2093523770 hasConceptScore W2093523770C95444343 @default.