Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093529512> ?p ?o ?g. }
- W2093529512 endingPage "2851" @default.
- W2093529512 startingPage "2821" @default.
- W2093529512 abstract "We study equal weight numerical integration, or Quasi Monte Carlo (QMC) rules, for functions in a Sobolev space <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper H Superscript s Baseline left-parenthesis double-struck upper S Superscript d Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>H</mml:mi> </mml:mrow> <mml:mi>s</mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>S</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {H}^s( mathbb {S}^d)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with smoothness parameter <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=s greater-than d slash 2> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>></mml:mo> <mml:mi>d</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>s > d/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> defined over the unit sphere <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper S Superscript d> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>S</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>mathbb {S}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper R Superscript d plus 1> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>d</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=application/x-tex>mathbb {R}^{d+1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Focusing on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper N> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=application/x-tex>N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-point configurations that achieve optimal order QMC error bounds (as is the case for efficient spherical designs), we are led to introduce the concept of QMC designs: these are sequences of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper N> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=application/x-tex>N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-point configurations <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X Subscript upper N> <mml:semantics> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>N</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>X_N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper S Superscript d> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>S</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>mathbb {S}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the worst-case error satisfies <disp-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sup Underscript StartLayout 1st Row f element-of double-struck upper H Superscript s Baseline left-parenthesis double-struck upper S Superscript d Baseline right-parenthesis comma 2nd Row double-vertical-bar f double-vertical-bar Subscript double-struck upper H Sub Superscript s Subscript Baseline less-than-or-equal-to 1 EndLayout Endscripts StartAbsoluteValue StartFraction 1 Over upper N EndFraction sigma-summation Underscript bold x element-of upper X Subscript upper N Baseline Endscripts f left-parenthesis bold x right-parenthesis minus integral Underscript double-struck upper S Superscript d Baseline Endscripts f left-parenthesis bold x right-parenthesis normal d sigma Subscript d Baseline left-parenthesis bold x right-parenthesis EndAbsoluteValue equals script upper O left-parenthesis upper N Superscript negative s slash d Baseline right-parenthesis comma upper N right-arrow normal infinity comma> <mml:semantics> <mml:mrow> <mml:munder> <mml:mo movablelimits=true form=prefix>sup</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mstyle scriptlevel=1> <mml:mtable rowspacing=0.1em columnspacing=0em displaystyle=false> <mml:mtr> <mml:mtd> <mml:mi>f</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>H</mml:mi> </mml:mrow> <mml:mi>s</mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>S</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mo fence=false stretchy=false>‖<!-- ‖ --></mml:mo> <mml:mi>f</mml:mi> <mml:msub> <mml:mo fence=false stretchy=false>‖<!-- ‖ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>H</mml:mi> </mml:mrow> <mml:mi>s</mml:mi> </mml:msup> </mml:mrow> </mml:msub> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>1</mml:mn> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mstyle> </mml:mrow> </mml:munder> <mml:mstyle scriptlevel=0> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo maxsize=2.470em minsize=2.470em>|</mml:mo> </mml:mrow> </mml:mstyle> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>N</mml:mi> </mml:mfrac> <mml:munder> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=bold>x</mml:mi> </mml:mrow> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>N</mml:mi> </mml:msub> </mml:mrow> </mml:munder> <mml:mi>f</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=bold>x</mml:mi> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>S</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:msub> <mml:mi>f</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=bold>x</mml:mi> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> <mml:mspace width=thinmathspace /> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>d</mml:mi> </mml:mrow> <mml:msub> <mml:mi>σ<!-- σ --></mml:mi> <mml:mi>d</mml:mi> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=bold>x</mml:mi> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> <mml:mstyle scriptlevel=0> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo maxsize=2.470em minsize=2.470em>|</mml:mo> </mml:mrow> </mml:mstyle> <mml:mo>=</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>O</mml:mi> </mml:mrow> <mml:mstyle scriptlevel=0> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo maxsize=1.2em minsize=1.2em>(</mml:mo> </mml:mrow> </mml:mstyle> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>−<!-- − --></mml:mo> <mml:mi>s</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:mstyle scriptlevel=0> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo maxsize=1.2em minsize=1.2em>)</mml:mo> </mml:mrow> </mml:mstyle> <mml:mo>,</mml:mo> <mml:mspace width=2em /> <mml:mi>N</mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>begin{equation*} sup _{substack {f in mathbb {H}^s( mathbb {S}^d ), | f |_{mathbb {H}^s} leq 1}} Bigg | frac {1}{N} sum _{mathbf {x} in X_N} f( mathbf {x} ) - int _{mathbb {S}^d} f( mathbf {x} ) , mathrm {d} sigma _d( mathbf {x} ) Bigg | = mathcal {O}big ( N^{-s/d} big ), qquad N to infty , end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> with an implied constant that depends on the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper H Superscript s Baseline left-parenthesis double-struck upper S Superscript d Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>H</mml:mi> </mml:mrow> <mml:mi>s</mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>S</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {H}^s( mathbb {S}^d )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm, but is independent of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper N> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=application/x-tex>N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Here <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sigma Subscript d> <mml:semantics> <mml:msub> <mml:mi>σ<!-- σ --></mml:mi> <mml:mi>d</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>sigma _d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the normalized surface measure on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper S Superscript d> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>S</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>mathbb {S}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We provide methods for generation and numerical testing of QMC designs. An essential tool is an expression for the worst-case error in terms of a reproducing kernel for the space <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper H Superscript s Baseline left-parenthesis double-struck upper S Superscript d Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>H</mml:mi> </mml:mrow> <mml:mi>s</mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>S</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {H}^s( mathbb {S}^d )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=s greater-than d slash 2> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>></mml:mo> <mml:mi>d</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>s > d/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a consequence of this and a recent result of Bondarenko et al. on the existence of spherical designs with appropriate number of points, we show that minimizers of the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper N> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=application/x-tex>N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-point energy for this kernel form a sequence of QMC designs for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper H Superscript s Baseline left-parenthesis double-struck upper S Superscript d Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>H</mml:mi> </mml:mrow> <mml:mi>s</mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>S</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {H}^s( mathbb {S}^d )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Furthermore, without appealing to the Bondarenko et al. result, we prove that point sets that maximize the sum of suitable powers of the Euclidean distance between pairs of points form a sequence of QMC designs for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper H Superscript s Baseline left-parenthesis double-struck upper S Superscript d Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>H</mml:mi> </mml:mrow> <mml:mi>s</mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>S</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {H}^s( mathbb {S}^d )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=s> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding=application/x-tex>s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the interval <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis d slash 2 comma d slash 2 plus 1 right-parenthesis> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>(</mml:mo> <mml:mi>d</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{(d/2,d/2+1)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For such spaces there exist reproducing kernels with simple closed forms that are useful for numerical testing of optimal order Quasi Monte Carlo integration. Numerical experiments suggest that many familiar sequences of point sets on the sphere (equal area points, spiral points, minimal [Coulomb or logarithmic] energy points, and Fekete points) are QMC designs for appropriate values of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=s> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding=application/x-tex>s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For comparison purposes we show that configurations of random points that are independently and uniformly distributed on the sphere do not constitute QMC designs for any <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=s greater-than d slash 2> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>></mml:mo> <mml:mi>d</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>s>d/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. If <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper X Subscript upper N Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>N</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(X_N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a sequence of QMC designs for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper H Superscript s Baseline left-parenthesis double-struck upper S Superscript d Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>H</mml:mi> </mml:mrow> <mml:mi>s</mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>S</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {H}^s( mathbb {S}^d)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we prove that it is also a sequence of QMC designs for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper H Superscript s prime Baseline left-parenthesis double-struck upper S Superscript d Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>H</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>s</mml:mi> <mml:mo>′</mml:mo> </mml:msup> </mml:mrow> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>S</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {H}^{s’}( mathbb {S}^d)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=s prime element-of left-parenthesis d slash 2 comma s right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>s</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>d</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>s’in (d/2,s)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This leads to the question of determining the supremum of such <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=s> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding=application/x-tex>s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (here called the QMC strength of the sequence), for which we provide estimates based on computations for the aforementioned sequences." @default.
- W2093529512 created "2016-06-24" @default.
- W2093529512 creator A5030553260 @default.
- W2093529512 creator A5045775858 @default.
- W2093529512 creator A5049066971 @default.
- W2093529512 creator A5075686837 @default.
- W2093529512 date "2014-04-21" @default.
- W2093529512 modified "2023-10-16" @default.
- W2093529512 title "QMC designs: Optimal order Quasi Monte Carlo integration schemes on the sphere" @default.
- W2093529512 cites W1916127968 @default.
- W2093529512 cites W1963785789 @default.
- W2093529512 cites W1971019328 @default.
- W2093529512 cites W1972494726 @default.
- W2093529512 cites W1976497332 @default.
- W2093529512 cites W1985881607 @default.
- W2093529512 cites W1989397443 @default.
- W2093529512 cites W1993553799 @default.
- W2093529512 cites W1994336294 @default.
- W2093529512 cites W2000261957 @default.
- W2093529512 cites W2002528573 @default.
- W2093529512 cites W2008151474 @default.
- W2093529512 cites W2014177530 @default.
- W2093529512 cites W2019045267 @default.
- W2093529512 cites W2021199755 @default.
- W2093529512 cites W2021688531 @default.
- W2093529512 cites W2036738119 @default.
- W2093529512 cites W2040059560 @default.
- W2093529512 cites W2041559800 @default.
- W2093529512 cites W2047342172 @default.
- W2093529512 cites W2048615677 @default.
- W2093529512 cites W2063945997 @default.
- W2093529512 cites W2087255259 @default.
- W2093529512 cites W2087947797 @default.
- W2093529512 cites W2142359645 @default.
- W2093529512 cites W2157823613 @default.
- W2093529512 cites W2313689636 @default.
- W2093529512 cites W2584020404 @default.
- W2093529512 cites W2593116386 @default.
- W2093529512 cites W2964178386 @default.
- W2093529512 cites W3105696937 @default.
- W2093529512 cites W4212933304 @default.
- W2093529512 cites W4240240566 @default.
- W2093529512 cites W4250271223 @default.
- W2093529512 cites W4254849512 @default.
- W2093529512 doi "https://doi.org/10.1090/s0025-5718-2014-02839-1" @default.
- W2093529512 hasPublicationYear "2014" @default.
- W2093529512 type Work @default.
- W2093529512 sameAs 2093529512 @default.
- W2093529512 citedByCount "76" @default.
- W2093529512 countsByYear W20935295122013 @default.
- W2093529512 countsByYear W20935295122014 @default.
- W2093529512 countsByYear W20935295122015 @default.
- W2093529512 countsByYear W20935295122016 @default.
- W2093529512 countsByYear W20935295122017 @default.
- W2093529512 countsByYear W20935295122018 @default.
- W2093529512 countsByYear W20935295122019 @default.
- W2093529512 countsByYear W20935295122020 @default.
- W2093529512 countsByYear W20935295122021 @default.
- W2093529512 countsByYear W20935295122022 @default.
- W2093529512 countsByYear W20935295122023 @default.
- W2093529512 crossrefType "journal-article" @default.
- W2093529512 hasAuthorship W2093529512A5030553260 @default.
- W2093529512 hasAuthorship W2093529512A5045775858 @default.
- W2093529512 hasAuthorship W2093529512A5049066971 @default.
- W2093529512 hasAuthorship W2093529512A5075686837 @default.
- W2093529512 hasBestOaLocation W20935295121 @default.
- W2093529512 hasConcept C10138342 @default.
- W2093529512 hasConcept C105795698 @default.
- W2093529512 hasConcept C111350023 @default.
- W2093529512 hasConcept C121332964 @default.
- W2093529512 hasConcept C121864883 @default.
- W2093529512 hasConcept C126255220 @default.
- W2093529512 hasConcept C13153151 @default.
- W2093529512 hasConcept C132725507 @default.
- W2093529512 hasConcept C162324750 @default.
- W2093529512 hasConcept C182306322 @default.
- W2093529512 hasConcept C19499675 @default.
- W2093529512 hasConcept C28826006 @default.
- W2093529512 hasConcept C33923547 @default.
- W2093529512 hasConcept C63320529 @default.
- W2093529512 hasConceptScore W2093529512C10138342 @default.
- W2093529512 hasConceptScore W2093529512C105795698 @default.
- W2093529512 hasConceptScore W2093529512C111350023 @default.
- W2093529512 hasConceptScore W2093529512C121332964 @default.
- W2093529512 hasConceptScore W2093529512C121864883 @default.
- W2093529512 hasConceptScore W2093529512C126255220 @default.
- W2093529512 hasConceptScore W2093529512C13153151 @default.
- W2093529512 hasConceptScore W2093529512C132725507 @default.
- W2093529512 hasConceptScore W2093529512C162324750 @default.
- W2093529512 hasConceptScore W2093529512C182306322 @default.
- W2093529512 hasConceptScore W2093529512C19499675 @default.
- W2093529512 hasConceptScore W2093529512C28826006 @default.
- W2093529512 hasConceptScore W2093529512C33923547 @default.
- W2093529512 hasConceptScore W2093529512C63320529 @default.
- W2093529512 hasIssue "290" @default.
- W2093529512 hasLocation W20935295121 @default.
- W2093529512 hasLocation W20935295122 @default.
- W2093529512 hasLocation W20935295123 @default.