Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093547237> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2093547237 endingPage "810" @default.
- W2093547237 startingPage "806" @default.
- W2093547237 abstract "Analytical solution for Joule–Thomson cooling during CO 2 geo-sequestration in depleted oil and gas reservoirs Simon A. Mathias a *, Jon G. Gluyas a , Curtis M. Oldenburg b , Chin-Fu Tsang b b Department of Earth Sciences, Durham University, Durham, UK Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA a ABSTRACT Mathematical tools are needed to screen out sites where Joule Thomson cooling is a prohibitive factor for CO 2 geo- sequestration and to design approaches to mitigate the effect. In this paper, a simple analytical solution is developed by invoking steady-state flow and constant thermophysical properties. The analytical solution allows fast evaluation of spatiotemporal temperature fields, resulting from constant-rate CO 2 injection. The applicability of the analytical solution is demonstrated by comparison with non-isothermal simulation results from the reservoir simulator TOUGH2. Analysis confirms that for an injection rate of 3 kgs−1 (0.1MTyr−1) into moderately warm(>40°C) and permeable formations(>10 −14 m 2 (10 mD)), JTC is unlikely to be a problem for initial reservoir pressures as low as2 MPa (290 psi). Keywords: Joule–Thomson cooling Geologic carbon sequestration Depleted gas reservoirs 1. Introduction Depleted oil and gas reservoirs (DOGRs) represent a significant portion of the global portfolio of target formations currently under consideration for CO 2 geo-sequestration (Benson and Cook, 2005). There are two major advantages associated with DOGRs:(1) they have been extensively characterized during exploration, appraisal and production; (2) they are already proven as potentially long- term traps for buoyant fluids owing to their ability to store oil and gas over tens to hundreds of millions of years(Maloney and Briceno, 2009). However, low pore-pressures, characteristic of depletion- drive reservoirs at cessation of production, will lead to significant Joule–Thomson cooling (JTC) when large pressure gradients are developed due to CO 2 injection. JTC is the name given to the drop in temperature that occurs when a real gas such as CO 2 expands from high pressure to low pressure at constant enthalpy (i.e., adiabatic expansion) (see Oldenburg, 2007b, for further detail). Of particular concern is the severe loss of injectivity that may develop due to freezing of pore fluids (e.g., native brine)and/or the generation of CO 2 or CH 4 hydrates, effectively rendering the injection well dysfunctional (Oldenburg, 2007b). Mathematical tools are needed to identify and evaluate sites where JTC is a prohibitive factor for CO 2 geo-sequestration and to aid in the design of approaches to mitigate the effect. Previously JTC during CO 2 geo-sequestration has been explored using laboratory experiments (Maloney and Briceno, 2009) and numerical simulation (Oldenburg, 2007a; Bielinski et al., 2008; Andre et al., 2010). For wider accessibility and application, analytical solutions are preferable, especially those that can be implemented in simple spreadsheet software (e.g. Oldenburg, 2007b; Mathias et al., 2009a,b). Unfortunately, analytical solution of the full JTC problem is not possible due to the non-linear coupling between the associated fluid flow and thermal transport equations. However, for the low pressures of interest, the Joule–Thomson coefficient for CO 2 remains relatively constant (see Andre et al., 2010, Fig. 1). It is therefore hypothesized that meaningful results can be obtained when thermophysical properties are assumed constant and uniform. In this paper, a simple analytical solution is developed by invoking steady-state flow and constant thermophysical properties. The analytical solution allows fast evaluation of spatiotemporal temperature fields resulting from constant-rate CO 2 injection. The applicability of the analytical solution is demonstrated by comparison with fully coupled and transient non-isothermal simulation results from the reservoir simulator TOUGH2/EOS7C (Oldenburg et al., 2004a). Sensitivity analysis of the analytical solution is explored to provide insight into the importance of JTC for DOGRs. 2. The mathematical model Consider the constant-rate injection of fluid from a fully penetrating injection well into an infinite, homogenous and isotropic, insulated and confined formation. As mentioned previously, for the low pressures of interest, the Joule–Thomson coefficient for CO 2 remains relatively constant. It is therefore hypothesized that meaningful results can be obtained when thermophysical properties are" @default.
- W2093547237 created "2016-06-24" @default.
- W2093547237 creator A5024338561 @default.
- W2093547237 creator A5028665340 @default.
- W2093547237 creator A5039523829 @default.
- W2093547237 creator A5051057763 @default.
- W2093547237 date "2010-09-01" @default.
- W2093547237 modified "2023-10-03" @default.
- W2093547237 title "Analytical solution for Joule–Thomson cooling during CO2 geo-sequestration in depleted oil and gas reservoirs" @default.
- W2093547237 cites W1962887317 @default.
- W2093547237 cites W1978440394 @default.
- W2093547237 cites W1985466993 @default.
- W2093547237 cites W2007043956 @default.
- W2093547237 cites W2023510069 @default.
- W2093547237 cites W2064927687 @default.
- W2093547237 cites W2070339630 @default.
- W2093547237 cites W2072985366 @default.
- W2093547237 cites W2096643994 @default.
- W2093547237 cites W2159352443 @default.
- W2093547237 cites W2465937446 @default.
- W2093547237 cites W2570427714 @default.
- W2093547237 cites W2952904918 @default.
- W2093547237 cites W2997922867 @default.
- W2093547237 cites W3217528490 @default.
- W2093547237 doi "https://doi.org/10.1016/j.ijggc.2010.05.008" @default.
- W2093547237 hasPublicationYear "2010" @default.
- W2093547237 type Work @default.
- W2093547237 sameAs 2093547237 @default.
- W2093547237 citedByCount "62" @default.
- W2093547237 countsByYear W20935472372012 @default.
- W2093547237 countsByYear W20935472372013 @default.
- W2093547237 countsByYear W20935472372014 @default.
- W2093547237 countsByYear W20935472372015 @default.
- W2093547237 countsByYear W20935472372016 @default.
- W2093547237 countsByYear W20935472372017 @default.
- W2093547237 countsByYear W20935472372018 @default.
- W2093547237 countsByYear W20935472372019 @default.
- W2093547237 countsByYear W20935472372020 @default.
- W2093547237 countsByYear W20935472372021 @default.
- W2093547237 countsByYear W20935472372022 @default.
- W2093547237 countsByYear W20935472372023 @default.
- W2093547237 crossrefType "journal-article" @default.
- W2093547237 hasAuthorship W2093547237A5024338561 @default.
- W2093547237 hasAuthorship W2093547237A5028665340 @default.
- W2093547237 hasAuthorship W2093547237A5039523829 @default.
- W2093547237 hasAuthorship W2093547237A5051057763 @default.
- W2093547237 hasBestOaLocation W20935472373 @default.
- W2093547237 hasConcept C116915560 @default.
- W2093547237 hasConcept C117926987 @default.
- W2093547237 hasConcept C119599485 @default.
- W2093547237 hasConcept C121332964 @default.
- W2093547237 hasConcept C127413603 @default.
- W2093547237 hasConcept C163258240 @default.
- W2093547237 hasConcept C192562407 @default.
- W2093547237 hasConcept C2779058145 @default.
- W2093547237 hasConcept C39432304 @default.
- W2093547237 hasConcept C548081761 @default.
- W2093547237 hasConcept C57879066 @default.
- W2093547237 hasConcept C68656383 @default.
- W2093547237 hasConcept C78762247 @default.
- W2093547237 hasConcept C97355855 @default.
- W2093547237 hasConceptScore W2093547237C116915560 @default.
- W2093547237 hasConceptScore W2093547237C117926987 @default.
- W2093547237 hasConceptScore W2093547237C119599485 @default.
- W2093547237 hasConceptScore W2093547237C121332964 @default.
- W2093547237 hasConceptScore W2093547237C127413603 @default.
- W2093547237 hasConceptScore W2093547237C163258240 @default.
- W2093547237 hasConceptScore W2093547237C192562407 @default.
- W2093547237 hasConceptScore W2093547237C2779058145 @default.
- W2093547237 hasConceptScore W2093547237C39432304 @default.
- W2093547237 hasConceptScore W2093547237C548081761 @default.
- W2093547237 hasConceptScore W2093547237C57879066 @default.
- W2093547237 hasConceptScore W2093547237C68656383 @default.
- W2093547237 hasConceptScore W2093547237C78762247 @default.
- W2093547237 hasConceptScore W2093547237C97355855 @default.
- W2093547237 hasIssue "5" @default.
- W2093547237 hasLocation W20935472371 @default.
- W2093547237 hasLocation W20935472372 @default.
- W2093547237 hasLocation W20935472373 @default.
- W2093547237 hasLocation W20935472374 @default.
- W2093547237 hasOpenAccess W2093547237 @default.
- W2093547237 hasPrimaryLocation W20935472371 @default.
- W2093547237 hasRelatedWork W2013714794 @default.
- W2093547237 hasRelatedWork W2019780117 @default.
- W2093547237 hasRelatedWork W2027294726 @default.
- W2093547237 hasRelatedWork W2085426260 @default.
- W2093547237 hasRelatedWork W2362688909 @default.
- W2093547237 hasRelatedWork W2365578918 @default.
- W2093547237 hasRelatedWork W2372368244 @default.
- W2093547237 hasRelatedWork W2373989821 @default.
- W2093547237 hasRelatedWork W2375815321 @default.
- W2093547237 hasRelatedWork W4378230503 @default.
- W2093547237 hasVolume "4" @default.
- W2093547237 isParatext "false" @default.
- W2093547237 isRetracted "false" @default.
- W2093547237 magId "2093547237" @default.
- W2093547237 workType "article" @default.