Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093559246> ?p ?o ?g. }
- W2093559246 endingPage "5928" @default.
- W2093559246 startingPage "5903" @default.
- W2093559246 abstract "Abstract. Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000–2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October–January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo–Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of secondary inorganic aerosol are suppressed in the models because relative humidity (RH) is biased far too low in the boundary layer and thus foggy conditions are poorly represented in current models, the nitrate aerosol is either missing or inadequately accounted for, and emissions from agricultural waste burning and biofuel usage are too low in the emission inventories. These common problems and possible causes found in multiple models point out directions for future model improvements in this important region." @default.
- W2093559246 created "2016-06-24" @default.
- W2093559246 creator A5013421771 @default.
- W2093559246 creator A5016726854 @default.
- W2093559246 creator A5017366139 @default.
- W2093559246 creator A5020185628 @default.
- W2093559246 creator A5022632784 @default.
- W2093559246 creator A5023905980 @default.
- W2093559246 creator A5027542322 @default.
- W2093559246 creator A5034984816 @default.
- W2093559246 creator A5042660117 @default.
- W2093559246 creator A5048149246 @default.
- W2093559246 creator A5057670256 @default.
- W2093559246 creator A5057987416 @default.
- W2093559246 date "2015-05-28" @default.
- W2093559246 modified "2023-10-15" @default.
- W2093559246 title "A multi-model evaluation of aerosols over South Asia: common problems and possible causes" @default.
- W2093559246 cites W1546982118 @default.
- W2093559246 cites W1551532899 @default.
- W2093559246 cites W1905297124 @default.
- W2093559246 cites W1907369419 @default.
- W2093559246 cites W1940238987 @default.
- W2093559246 cites W1944476517 @default.
- W2093559246 cites W1960909689 @default.
- W2093559246 cites W1968163205 @default.
- W2093559246 cites W1973144465 @default.
- W2093559246 cites W1977246492 @default.
- W2093559246 cites W1978124111 @default.
- W2093559246 cites W1979660112 @default.
- W2093559246 cites W1980560428 @default.
- W2093559246 cites W1980815716 @default.
- W2093559246 cites W1985078380 @default.
- W2093559246 cites W1986449235 @default.
- W2093559246 cites W1991096607 @default.
- W2093559246 cites W1991869820 @default.
- W2093559246 cites W1994351487 @default.
- W2093559246 cites W2001981020 @default.
- W2093559246 cites W2002992571 @default.
- W2093559246 cites W2009593394 @default.
- W2093559246 cites W2013018197 @default.
- W2093559246 cites W2015391101 @default.
- W2093559246 cites W2017201427 @default.
- W2093559246 cites W2018593037 @default.
- W2093559246 cites W2019692945 @default.
- W2093559246 cites W2020247054 @default.
- W2093559246 cites W2021394581 @default.
- W2093559246 cites W2030580060 @default.
- W2093559246 cites W2032631054 @default.
- W2093559246 cites W2032695001 @default.
- W2093559246 cites W2036550003 @default.
- W2093559246 cites W2042695194 @default.
- W2093559246 cites W2046350296 @default.
- W2093559246 cites W2048512417 @default.
- W2093559246 cites W2052101570 @default.
- W2093559246 cites W2062422119 @default.
- W2093559246 cites W2067726355 @default.
- W2093559246 cites W2068361634 @default.
- W2093559246 cites W2070533532 @default.
- W2093559246 cites W2072019789 @default.
- W2093559246 cites W2072585620 @default.
- W2093559246 cites W2077426193 @default.
- W2093559246 cites W2078078291 @default.
- W2093559246 cites W2079945905 @default.
- W2093559246 cites W2082000275 @default.
- W2093559246 cites W2082562995 @default.
- W2093559246 cites W2083471549 @default.
- W2093559246 cites W2084676053 @default.
- W2093559246 cites W2085743382 @default.
- W2093559246 cites W2085849605 @default.
- W2093559246 cites W2087416503 @default.
- W2093559246 cites W2089433206 @default.
- W2093559246 cites W2089999855 @default.
- W2093559246 cites W2092963401 @default.
- W2093559246 cites W2094305841 @default.
- W2093559246 cites W2097083345 @default.
- W2093559246 cites W2098384066 @default.
- W2093559246 cites W2102834380 @default.
- W2093559246 cites W2112335693 @default.
- W2093559246 cites W2113383654 @default.
- W2093559246 cites W2113594490 @default.
- W2093559246 cites W2117295103 @default.
- W2093559246 cites W2117922368 @default.
- W2093559246 cites W2124061257 @default.
- W2093559246 cites W2126619172 @default.
- W2093559246 cites W2126696183 @default.
- W2093559246 cites W2131491776 @default.
- W2093559246 cites W2134927874 @default.
- W2093559246 cites W2136408596 @default.
- W2093559246 cites W2139695733 @default.
- W2093559246 cites W2141111894 @default.
- W2093559246 cites W2142037892 @default.
- W2093559246 cites W2147323222 @default.
- W2093559246 cites W2147489313 @default.
- W2093559246 cites W2148651398 @default.
- W2093559246 cites W2149745779 @default.
- W2093559246 cites W2158210976 @default.
- W2093559246 cites W2161770391 @default.
- W2093559246 cites W2162203887 @default.