Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093561570> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2093561570 endingPage "149" @default.
- W2093561570 startingPage "136" @default.
- W2093561570 abstract "We investigated the stable carbon isotopic composition (δ13C) of dissolved inorganic carbon (DIC) in carbonate springs that evolve chemically to supersaturation with respect to calcite and to isotopic equilibrium with atmospheric CO2(g). The δ13C of DIC (δ13CDIC) will track isotopic fractionation accompanying carbon loss to the atmosphere, precipitation of calcite or carbon exchange with atmospheric CO2(g). We assessed the DIC and δ13CDIC evolution along the flow paths of springs in the field. Since chemical equilibrium is a precondition for isotopic equilibrium, and because it is difficult to follow the evolution of carbonate springs to isotopic equilibrium with atmospheric CO2(g) in field settings, three sets of spring samples were exposed to laboratory atmospheric CO2(g) and allowed to evolve to isotopic equilibrium. One subset of the experimental sample was agitated to simulate mixing in the field. The physical, chemical and carbon isotopic changes in the field and laboratory experiments were complex and varied. Chemical speciation and isotopic mass balance modeling showed that the evolution to calcite supersaturation can be conceptualized in 4 discrete steps, each characterized either by kinetic fractionation, equilibrium fractionation or carbon isotopic exchange with atmospheric CO2(g). These steps sequentially are (1) undersaturation to supersaturation where DIC decreases from CO2(g) loss from solution and small increases in the δ13CDIC (1–2‰) are from kinetic fractionation, (2) saturation to supersaturation where relatively no DIC is lost and small increases in the δ13CDIC (~ 1‰) are likely due to isotopic exchange of carbon between DIC and atmospheric CO2(g), (3) decreasing supersaturation where DIC concentration decreases and larger increases in the δ13CDIC (~ 5‰) are from equilibrium isotopic fractionation and (4) increasing saturation where the previous decreasing supersaturation and DIC concentration decreases reverse and increase because of evaporation, and the continued increase in the δ13CDIC (~ 2‰) is from isotopic exchange of carbon between DIC and atmospheric CO2(g). The unmixed laboratory samples evolved through steps 1, 2 and 3, while the mixed laboratory sample evolved through steps 1, 2, 3 and 4 because agitation of the solution increased the reaction rates and enhanced DIC–atmospheric CO2(g) interaction. The chemical and isotopic evolution of the field samples were limited to steps 1 and 2 because of the relatively short length of flowing springs which limit carbonate evolution to calcite saturation. Our findings suggest that for carbonate springs in contact with atmospheric CO2(g), significant δ13CDIC enrichment that occurs after calcite supersaturation is dominated by equilibrium isotopic effect, despite conditions conducive for calcite precipitation. We hypothesize that the chemical and isotopic behavior observed for the field and laboratory experiments may characterize other carbonate-rich waters (e.g., streams and lakes) evolving in contact with the atmosphere." @default.
- W2093561570 created "2016-06-24" @default.
- W2093561570 creator A5033251217 @default.
- W2093561570 creator A5035497464 @default.
- W2093561570 date "2015-05-01" @default.
- W2093561570 modified "2023-10-02" @default.
- W2093561570 title "Controls on the chemical and isotopic composition of carbonate springs during evolution to saturation with respect to calcite" @default.
- W2093561570 cites W1966384186 @default.
- W2093561570 cites W1968127990 @default.
- W2093561570 cites W1976556587 @default.
- W2093561570 cites W1987036576 @default.
- W2093561570 cites W1989997789 @default.
- W2093561570 cites W1997197351 @default.
- W2093561570 cites W1999094051 @default.
- W2093561570 cites W2006000012 @default.
- W2093561570 cites W2012469587 @default.
- W2093561570 cites W2015880173 @default.
- W2093561570 cites W2029005858 @default.
- W2093561570 cites W2030757900 @default.
- W2093561570 cites W2034575670 @default.
- W2093561570 cites W2054183883 @default.
- W2093561570 cites W2054311028 @default.
- W2093561570 cites W2054453365 @default.
- W2093561570 cites W2062746313 @default.
- W2093561570 cites W2063438001 @default.
- W2093561570 cites W2069533355 @default.
- W2093561570 cites W2092761152 @default.
- W2093561570 cites W2095085399 @default.
- W2093561570 cites W2332387888 @default.
- W2093561570 doi "https://doi.org/10.1016/j.chemgeo.2015.03.024" @default.
- W2093561570 hasPublicationYear "2015" @default.
- W2093561570 type Work @default.
- W2093561570 sameAs 2093561570 @default.
- W2093561570 citedByCount "12" @default.
- W2093561570 countsByYear W20935615702017 @default.
- W2093561570 countsByYear W20935615702019 @default.
- W2093561570 countsByYear W20935615702020 @default.
- W2093561570 countsByYear W20935615702021 @default.
- W2093561570 countsByYear W20935615702022 @default.
- W2093561570 countsByYear W20935615702023 @default.
- W2093561570 crossrefType "journal-article" @default.
- W2093561570 hasAuthorship W2093561570A5033251217 @default.
- W2093561570 hasAuthorship W2093561570A5035497464 @default.
- W2093561570 hasConcept C107872376 @default.
- W2093561570 hasConcept C111368507 @default.
- W2093561570 hasConcept C114614502 @default.
- W2093561570 hasConcept C127313418 @default.
- W2093561570 hasConcept C158787203 @default.
- W2093561570 hasConcept C178790620 @default.
- W2093561570 hasConcept C185059815 @default.
- W2093561570 hasConcept C185592680 @default.
- W2093561570 hasConcept C195511166 @default.
- W2093561570 hasConcept C199289684 @default.
- W2093561570 hasConcept C200447597 @default.
- W2093561570 hasConcept C2779334269 @default.
- W2093561570 hasConcept C2780191791 @default.
- W2093561570 hasConcept C2780659211 @default.
- W2093561570 hasConcept C33923547 @default.
- W2093561570 hasConcept C36574619 @default.
- W2093561570 hasConcept C97428945 @default.
- W2093561570 hasConcept C9930424 @default.
- W2093561570 hasConceptScore W2093561570C107872376 @default.
- W2093561570 hasConceptScore W2093561570C111368507 @default.
- W2093561570 hasConceptScore W2093561570C114614502 @default.
- W2093561570 hasConceptScore W2093561570C127313418 @default.
- W2093561570 hasConceptScore W2093561570C158787203 @default.
- W2093561570 hasConceptScore W2093561570C178790620 @default.
- W2093561570 hasConceptScore W2093561570C185059815 @default.
- W2093561570 hasConceptScore W2093561570C185592680 @default.
- W2093561570 hasConceptScore W2093561570C195511166 @default.
- W2093561570 hasConceptScore W2093561570C199289684 @default.
- W2093561570 hasConceptScore W2093561570C200447597 @default.
- W2093561570 hasConceptScore W2093561570C2779334269 @default.
- W2093561570 hasConceptScore W2093561570C2780191791 @default.
- W2093561570 hasConceptScore W2093561570C2780659211 @default.
- W2093561570 hasConceptScore W2093561570C33923547 @default.
- W2093561570 hasConceptScore W2093561570C36574619 @default.
- W2093561570 hasConceptScore W2093561570C97428945 @default.
- W2093561570 hasConceptScore W2093561570C9930424 @default.
- W2093561570 hasLocation W20935615701 @default.
- W2093561570 hasOpenAccess W2093561570 @default.
- W2093561570 hasPrimaryLocation W20935615701 @default.
- W2093561570 hasRelatedWork W1987388908 @default.
- W2093561570 hasRelatedWork W1987445809 @default.
- W2093561570 hasRelatedWork W2063031611 @default.
- W2093561570 hasRelatedWork W2093561570 @default.
- W2093561570 hasRelatedWork W2161722526 @default.
- W2093561570 hasRelatedWork W2354005919 @default.
- W2093561570 hasRelatedWork W2555248423 @default.
- W2093561570 hasRelatedWork W2750236831 @default.
- W2093561570 hasRelatedWork W3002066736 @default.
- W2093561570 hasRelatedWork W3016415670 @default.
- W2093561570 hasVolume "404" @default.
- W2093561570 isParatext "false" @default.
- W2093561570 isRetracted "false" @default.
- W2093561570 magId "2093561570" @default.
- W2093561570 workType "article" @default.