Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093635122> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2093635122 endingPage "92" @default.
- W2093635122 startingPage "83" @default.
- W2093635122 abstract "In large cohort studies, it is common that a subset of the regressors may be missing for some study subjects by design or happenstance. In this article, we apply the multiple data augmentation techniques to semiparametric models for epidemiologic data when a subset of the regressors are missing for some subjects, under the assumption that the data are missing at random in the sense of Rubin (2004) and that the missingness probabilities depend jointly on the observable subset of regressors, on a set of observable extraneous variables and on the outcome. Computational algorithms for the Poor Man's and the Asymptotic Normal data augmentations are investigated. Simulation studies show that the data augmentation approach generates satisfactory estimates and is computationally affordable. Under certain simulation scenarios, the proposed approach can achieve asymptotic efficiency similar to the maximum likelihood approach. We apply the proposed technique to the Multi-Ethic Study of Atherosclerosis (MESA) data and the South Wales Nickel Worker Study data." @default.
- W2093635122 created "2016-06-24" @default.
- W2093635122 creator A5070916971 @default.
- W2093635122 date "2006-02-01" @default.
- W2093635122 modified "2023-09-24" @default.
- W2093635122 title "Multiple Augmentation with Partial Missing Regressors" @default.
- W2093635122 cites W2008945435 @default.
- W2093635122 cites W2030172320 @default.
- W2093635122 cites W2031668066 @default.
- W2093635122 cites W2039811614 @default.
- W2093635122 cites W2046249327 @default.
- W2093635122 cites W2053301665 @default.
- W2093635122 cites W2082581821 @default.
- W2093635122 cites W2096295934 @default.
- W2093635122 cites W2107639732 @default.
- W2093635122 cites W2113939655 @default.
- W2093635122 cites W2152764015 @default.
- W2093635122 cites W2152977846 @default.
- W2093635122 cites W2156097706 @default.
- W2093635122 cites W4210569841 @default.
- W2093635122 doi "https://doi.org/10.1002/bimj.200510168" @default.
- W2093635122 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16544814" @default.
- W2093635122 hasPublicationYear "2006" @default.
- W2093635122 type Work @default.
- W2093635122 sameAs 2093635122 @default.
- W2093635122 citedByCount "4" @default.
- W2093635122 countsByYear W20936351222016 @default.
- W2093635122 countsByYear W20936351222019 @default.
- W2093635122 crossrefType "journal-article" @default.
- W2093635122 hasAuthorship W2093635122A5070916971 @default.
- W2093635122 hasConcept C105795698 @default.
- W2093635122 hasConcept C11413529 @default.
- W2093635122 hasConcept C121332964 @default.
- W2093635122 hasConcept C124101348 @default.
- W2093635122 hasConcept C149782125 @default.
- W2093635122 hasConcept C177264268 @default.
- W2093635122 hasConcept C199360897 @default.
- W2093635122 hasConcept C32848918 @default.
- W2093635122 hasConcept C33923547 @default.
- W2093635122 hasConcept C41008148 @default.
- W2093635122 hasConcept C58489278 @default.
- W2093635122 hasConcept C62520636 @default.
- W2093635122 hasConcept C9357733 @default.
- W2093635122 hasConceptScore W2093635122C105795698 @default.
- W2093635122 hasConceptScore W2093635122C11413529 @default.
- W2093635122 hasConceptScore W2093635122C121332964 @default.
- W2093635122 hasConceptScore W2093635122C124101348 @default.
- W2093635122 hasConceptScore W2093635122C149782125 @default.
- W2093635122 hasConceptScore W2093635122C177264268 @default.
- W2093635122 hasConceptScore W2093635122C199360897 @default.
- W2093635122 hasConceptScore W2093635122C32848918 @default.
- W2093635122 hasConceptScore W2093635122C33923547 @default.
- W2093635122 hasConceptScore W2093635122C41008148 @default.
- W2093635122 hasConceptScore W2093635122C58489278 @default.
- W2093635122 hasConceptScore W2093635122C62520636 @default.
- W2093635122 hasConceptScore W2093635122C9357733 @default.
- W2093635122 hasIssue "1" @default.
- W2093635122 hasLocation W20936351221 @default.
- W2093635122 hasLocation W20936351222 @default.
- W2093635122 hasOpenAccess W2093635122 @default.
- W2093635122 hasPrimaryLocation W20936351221 @default.
- W2093635122 hasRelatedWork W2250140425 @default.
- W2093635122 hasRelatedWork W2786479229 @default.
- W2093635122 hasRelatedWork W2788352274 @default.
- W2093635122 hasRelatedWork W2885473265 @default.
- W2093635122 hasRelatedWork W2997516437 @default.
- W2093635122 hasRelatedWork W3006107134 @default.
- W2093635122 hasRelatedWork W3213058221 @default.
- W2093635122 hasRelatedWork W3216372614 @default.
- W2093635122 hasRelatedWork W4295915923 @default.
- W2093635122 hasRelatedWork W4309531246 @default.
- W2093635122 hasVolume "48" @default.
- W2093635122 isParatext "false" @default.
- W2093635122 isRetracted "false" @default.
- W2093635122 magId "2093635122" @default.
- W2093635122 workType "article" @default.