Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093681483> ?p ?o ?g. }
- W2093681483 endingPage "463" @default.
- W2093681483 startingPage "451" @default.
- W2093681483 abstract "There is a constant shortage of red blood cells (RBCs) from sufficiently matched donors for patients who need chronic transfusion. Ex vivo expansion and maturation of human erythroid precursors (erythroblasts) from the patients or optimally matched donors could represent a potential solution. Proliferating erythroblasts can be expanded from umbilical cord blood mononuclear cells (CB MNCs) ex vivo for 106–107-fold (in ∼50 days) before proliferation arrest and reaching sufficient number for broad application. Here, we report that ectopic expression of three genetic factors (Sox2, c-Myc, and an shRNA against TP53 gene) associated with iPSC derivation enables CB-derived erythroblasts to undergo extended expansion (∼1068-fold in ∼12 months) in a serum-free culture condition without change of cell identity or function. These expanding erythroblasts maintain immature erythroblast phenotypes and morphology, a normal diploid karyotype and dependence on a specific combination of growth factors for proliferation throughout expansion period. When being switched to a terminal differentiation condition, these immortalized erythroblasts gradually exit cell cycle, decrease cell size, accumulate hemoglobin, condense nuclei and eventually give rise to enucleated hemoglobin-containing erythrocytes that can bind and release oxygen. Our result may ultimately lead to an alternative approach to generate unlimited numbers of RBCs for personalized transfusion medicine. There is a constant shortage of red blood cells (RBCs) from sufficiently matched donors for patients who need chronic transfusion. Ex vivo expansion and maturation of human erythroid precursors (erythroblasts) from the patients or optimally matched donors could represent a potential solution. Proliferating erythroblasts can be expanded from umbilical cord blood mononuclear cells (CB MNCs) ex vivo for 106–107-fold (in ∼50 days) before proliferation arrest and reaching sufficient number for broad application. Here, we report that ectopic expression of three genetic factors (Sox2, c-Myc, and an shRNA against TP53 gene) associated with iPSC derivation enables CB-derived erythroblasts to undergo extended expansion (∼1068-fold in ∼12 months) in a serum-free culture condition without change of cell identity or function. These expanding erythroblasts maintain immature erythroblast phenotypes and morphology, a normal diploid karyotype and dependence on a specific combination of growth factors for proliferation throughout expansion period. When being switched to a terminal differentiation condition, these immortalized erythroblasts gradually exit cell cycle, decrease cell size, accumulate hemoglobin, condense nuclei and eventually give rise to enucleated hemoglobin-containing erythrocytes that can bind and release oxygen. Our result may ultimately lead to an alternative approach to generate unlimited numbers of RBCs for personalized transfusion medicine." @default.
- W2093681483 created "2016-06-24" @default.
- W2093681483 creator A5013773397 @default.
- W2093681483 creator A5016317528 @default.
- W2093681483 creator A5037677450 @default.
- W2093681483 creator A5041691888 @default.
- W2093681483 creator A5047810681 @default.
- W2093681483 creator A5065107767 @default.
- W2093681483 creator A5066832003 @default.
- W2093681483 creator A5081289293 @default.
- W2093681483 creator A5090082947 @default.
- W2093681483 creator A5090661712 @default.
- W2093681483 date "2014-02-01" @default.
- W2093681483 modified "2023-09-25" @default.
- W2093681483 title "Extensive Ex Vivo Expansion of Functional Human Erythroid Precursors Established From Umbilical Cord Blood Cells by Defined Factors" @default.
- W2093681483 cites W1964543951 @default.
- W2093681483 cites W1966743369 @default.
- W2093681483 cites W1967521279 @default.
- W2093681483 cites W1970095666 @default.
- W2093681483 cites W1974742081 @default.
- W2093681483 cites W1977889349 @default.
- W2093681483 cites W1979908460 @default.
- W2093681483 cites W1981892849 @default.
- W2093681483 cites W1983217510 @default.
- W2093681483 cites W1985470849 @default.
- W2093681483 cites W1995718960 @default.
- W2093681483 cites W2003649512 @default.
- W2093681483 cites W2023519793 @default.
- W2093681483 cites W2029372290 @default.
- W2093681483 cites W2030173131 @default.
- W2093681483 cites W2038109864 @default.
- W2093681483 cites W2039412978 @default.
- W2093681483 cites W2040283736 @default.
- W2093681483 cites W2049231184 @default.
- W2093681483 cites W2054574471 @default.
- W2093681483 cites W2057641653 @default.
- W2093681483 cites W2059420581 @default.
- W2093681483 cites W2059432223 @default.
- W2093681483 cites W2062254735 @default.
- W2093681483 cites W2062330424 @default.
- W2093681483 cites W2063137674 @default.
- W2093681483 cites W2065314181 @default.
- W2093681483 cites W2074437024 @default.
- W2093681483 cites W2077487953 @default.
- W2093681483 cites W2082915580 @default.
- W2093681483 cites W2086068254 @default.
- W2093681483 cites W2096198457 @default.
- W2093681483 cites W2108992451 @default.
- W2093681483 cites W2109292614 @default.
- W2093681483 cites W2123970448 @default.
- W2093681483 cites W2125987139 @default.
- W2093681483 cites W2127088990 @default.
- W2093681483 cites W2135543168 @default.
- W2093681483 cites W2140717627 @default.
- W2093681483 cites W2144859693 @default.
- W2093681483 cites W2147032364 @default.
- W2093681483 cites W2151352779 @default.
- W2093681483 cites W2152913678 @default.
- W2093681483 cites W2156538246 @default.
- W2093681483 cites W2157741370 @default.
- W2093681483 cites W2161045200 @default.
- W2093681483 cites W2167094058 @default.
- W2093681483 cites W2169057883 @default.
- W2093681483 cites W2170923159 @default.
- W2093681483 doi "https://doi.org/10.1038/mt.2013.201" @default.
- W2093681483 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3916033" @default.
- W2093681483 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24002691" @default.
- W2093681483 hasPublicationYear "2014" @default.
- W2093681483 type Work @default.
- W2093681483 sameAs 2093681483 @default.
- W2093681483 citedByCount "46" @default.
- W2093681483 countsByYear W20936814832014 @default.
- W2093681483 countsByYear W20936814832015 @default.
- W2093681483 countsByYear W20936814832016 @default.
- W2093681483 countsByYear W20936814832017 @default.
- W2093681483 countsByYear W20936814832018 @default.
- W2093681483 countsByYear W20936814832019 @default.
- W2093681483 countsByYear W20936814832020 @default.
- W2093681483 countsByYear W20936814832021 @default.
- W2093681483 countsByYear W20936814832022 @default.
- W2093681483 countsByYear W20936814832023 @default.
- W2093681483 crossrefType "journal-article" @default.
- W2093681483 hasAuthorship W2093681483A5013773397 @default.
- W2093681483 hasAuthorship W2093681483A5016317528 @default.
- W2093681483 hasAuthorship W2093681483A5037677450 @default.
- W2093681483 hasAuthorship W2093681483A5041691888 @default.
- W2093681483 hasAuthorship W2093681483A5047810681 @default.
- W2093681483 hasAuthorship W2093681483A5065107767 @default.
- W2093681483 hasAuthorship W2093681483A5066832003 @default.
- W2093681483 hasAuthorship W2093681483A5081289293 @default.
- W2093681483 hasAuthorship W2093681483A5090082947 @default.
- W2093681483 hasAuthorship W2093681483A5090661712 @default.
- W2093681483 hasBestOaLocation W20936814831 @default.
- W2093681483 hasConcept C109159458 @default.
- W2093681483 hasConcept C137061746 @default.
- W2093681483 hasConcept C16685009 @default.
- W2093681483 hasConcept C202751555 @default.
- W2093681483 hasConcept C203014093 @default.