Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093710146> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2093710146 endingPage "1158" @default.
- W2093710146 startingPage "1157" @default.
- W2093710146 abstract "<h3>Background</h3> Diagnosis of epilepsy is based on descriptions of attacks, supported by finding epileptiform activity on EEG. Routine EEG can detect inter-ictal epileptiform discharges (IEDs) in approximately 50% of patients with epilepsy, and approximately 1% of the general population can have IEDs without ever developing epilepsy. The lack of a reliable biomarker is a factor in the high misdiagnosis rate of epilepsy. The EEG carries a wealth of information on brain activity, which cannot be discerned by visual analysis. Advanced EEG analysis with machine learning approaches hold promise in unlocking additional useful information contained in the EEG signal. <h3>Methods</h3> 20 patients with idiopathic generalised epilepsy and 20 age-matched controls underwent a 64-channel EEG. After pre-processing, a 20 second epoch of resting state, eyes closed EEG free from IEDs and artefact was used for analysis. Band-pass filtered EEG was used to construct functional connectivity matrices by calculating phase locking value (PLV) between electrode pairs. Connectivity matrices were analysed by a machine learning algorithm to classify patients into epilepsy and controls. <h3>Results</h3> The ML classifier achieved a classification accuracy of 60% between patients with epilepsy and normal controls. <h3>Conclusions</h3> Automated machine learning analysis has the potential to improve the diagnostic utility of EEG in epilepsy. Alternatives to functional connectivity matrices will be explored in future studies with the objective of improving classifier performance. rohanahmed92@gmail.com" @default.
- W2093710146 created "2016-06-24" @default.
- W2093710146 creator A5019095271 @default.
- W2093710146 creator A5085345905 @default.
- W2093710146 date "1994-09-01" @default.
- W2093710146 modified "2023-10-05" @default.
- W2093710146 title "Diencephalic amnesia: possible role of white matter structures." @default.
- W2093710146 cites W1987594172 @default.
- W2093710146 cites W2045823159 @default.
- W2093710146 cites W2068190767 @default.
- W2093710146 cites W4245320912 @default.
- W2093710146 doi "https://doi.org/10.1136/jnnp.57.9.1157-b" @default.
- W2093710146 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1073162" @default.
- W2093710146 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8089702" @default.
- W2093710146 hasPublicationYear "1994" @default.
- W2093710146 type Work @default.
- W2093710146 sameAs 2093710146 @default.
- W2093710146 citedByCount "0" @default.
- W2093710146 crossrefType "journal-article" @default.
- W2093710146 hasAuthorship W2093710146A5019095271 @default.
- W2093710146 hasAuthorship W2093710146A5085345905 @default.
- W2093710146 hasBestOaLocation W20937101461 @default.
- W2093710146 hasConcept C104317684 @default.
- W2093710146 hasConcept C126838900 @default.
- W2093710146 hasConcept C143409427 @default.
- W2093710146 hasConcept C15744967 @default.
- W2093710146 hasConcept C169760540 @default.
- W2093710146 hasConcept C180747234 @default.
- W2093710146 hasConcept C188147891 @default.
- W2093710146 hasConcept C2778615406 @default.
- W2093710146 hasConcept C2781192897 @default.
- W2093710146 hasConcept C55493867 @default.
- W2093710146 hasConcept C56273599 @default.
- W2093710146 hasConcept C71924100 @default.
- W2093710146 hasConcept C86803240 @default.
- W2093710146 hasConceptScore W2093710146C104317684 @default.
- W2093710146 hasConceptScore W2093710146C126838900 @default.
- W2093710146 hasConceptScore W2093710146C143409427 @default.
- W2093710146 hasConceptScore W2093710146C15744967 @default.
- W2093710146 hasConceptScore W2093710146C169760540 @default.
- W2093710146 hasConceptScore W2093710146C180747234 @default.
- W2093710146 hasConceptScore W2093710146C188147891 @default.
- W2093710146 hasConceptScore W2093710146C2778615406 @default.
- W2093710146 hasConceptScore W2093710146C2781192897 @default.
- W2093710146 hasConceptScore W2093710146C55493867 @default.
- W2093710146 hasConceptScore W2093710146C56273599 @default.
- W2093710146 hasConceptScore W2093710146C71924100 @default.
- W2093710146 hasConceptScore W2093710146C86803240 @default.
- W2093710146 hasIssue "9" @default.
- W2093710146 hasLocation W20937101461 @default.
- W2093710146 hasLocation W20937101462 @default.
- W2093710146 hasLocation W20937101463 @default.
- W2093710146 hasLocation W20937101464 @default.
- W2093710146 hasOpenAccess W2093710146 @default.
- W2093710146 hasPrimaryLocation W20937101461 @default.
- W2093710146 hasRelatedWork W1547645985 @default.
- W2093710146 hasRelatedWork W1973583269 @default.
- W2093710146 hasRelatedWork W1979485775 @default.
- W2093710146 hasRelatedWork W2034732810 @default.
- W2093710146 hasRelatedWork W2065074698 @default.
- W2093710146 hasRelatedWork W2066118748 @default.
- W2093710146 hasRelatedWork W2085642841 @default.
- W2093710146 hasRelatedWork W2093287941 @default.
- W2093710146 hasRelatedWork W2128524530 @default.
- W2093710146 hasRelatedWork W2989213550 @default.
- W2093710146 hasVolume "57" @default.
- W2093710146 isParatext "false" @default.
- W2093710146 isRetracted "false" @default.
- W2093710146 magId "2093710146" @default.
- W2093710146 workType "article" @default.