Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093747572> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2093747572 endingPage "392" @default.
- W2093747572 startingPage "363" @default.
- W2093747572 abstract "We investigate the relationship of F-regular (resp. F-pure) rings and log terminal (resp. log canonical) singularities. Also, we extend the notions of F-regularity and F-purity to “F-singularities of pairs. The notions of F-regular and F-pure rings in characteristic <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p greater-than 0> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>p > 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are characterized by a splitting of the Frobenius map, and define some classes of rings having “mild singularities. On the other hand, there are notions of log terminal and log canonical singularities defined via resolution of singularities in characteristic zero. These are defined also for pairs of a normal variety and a <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper Q> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Q</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-divisor on it, and play important roles in birational algebraic geometry. As an analog of these singularities of pairs, we introduce the concept of “F-singularities of pairs, namely strong F-regularity, divisorial F-regularity and F-purity for a pair <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper A comma normal upper Delta right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=normal>Δ<!-- Δ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(A,Delta )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a normal ring <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of characteristic <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p greater-than 0> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>p > 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and an effective <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper Q> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Q</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-divisor <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Delta> <mml:semantics> <mml:mi mathvariant=normal>Δ<!-- Δ --></mml:mi> <mml:annotation encoding=application/x-tex>Delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S p e c upper A> <mml:semantics> <mml:mrow> <mml:mi>Spec</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>operatorname {Spec} A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The main theorem of this paper asserts that, if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K Subscript upper A Baseline plus normal upper Delta> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>A</mml:mi> </mml:mrow> </mml:msub> <mml:mo>+</mml:mo> <mml:mi mathvariant=normal>Δ<!-- Δ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>K_{A}+Delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper Q> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Q</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Cartier, then the above three variants of F-singularities of pairs imply KLT, PLT and LC properties, respectively. We also prove some results for F-singularities of pairs which are analogous to singularities of pairs in characteristic zero." @default.
- W2093747572 created "2016-06-24" @default.
- W2093747572 creator A5005438023 @default.
- W2093747572 creator A5056088517 @default.
- W2093747572 date "2001-12-17" @default.
- W2093747572 modified "2023-10-16" @default.
- W2093747572 title "F-regular and F-pure rings vs. log terminal and log canonical singularities" @default.
- W2093747572 cites W1492504635 @default.
- W2093747572 cites W1514291611 @default.
- W2093747572 cites W1574454295 @default.
- W2093747572 cites W158925118 @default.
- W2093747572 cites W1738398607 @default.
- W2093747572 cites W1835889010 @default.
- W2093747572 cites W1970268810 @default.
- W2093747572 cites W1975117689 @default.
- W2093747572 cites W1985584270 @default.
- W2093747572 cites W2011948176 @default.
- W2093747572 cites W2036068038 @default.
- W2093747572 cites W2046284830 @default.
- W2093747572 cites W2049255375 @default.
- W2093747572 cites W2049865189 @default.
- W2093747572 cites W2059964819 @default.
- W2093747572 cites W2068852727 @default.
- W2093747572 cites W2074202781 @default.
- W2093747572 cites W2078113258 @default.
- W2093747572 cites W2104302473 @default.
- W2093747572 cites W2137579660 @default.
- W2093747572 cites W2143133960 @default.
- W2093747572 cites W4214485167 @default.
- W2093747572 cites W4235034083 @default.
- W2093747572 cites W4240638209 @default.
- W2093747572 cites W4242358539 @default.
- W2093747572 cites W4251850242 @default.
- W2093747572 doi "https://doi.org/10.1090/s1056-3911-01-00306-x" @default.
- W2093747572 hasPublicationYear "2001" @default.
- W2093747572 type Work @default.
- W2093747572 sameAs 2093747572 @default.
- W2093747572 citedByCount "194" @default.
- W2093747572 countsByYear W20937475722012 @default.
- W2093747572 countsByYear W20937475722013 @default.
- W2093747572 countsByYear W20937475722014 @default.
- W2093747572 countsByYear W20937475722015 @default.
- W2093747572 countsByYear W20937475722016 @default.
- W2093747572 countsByYear W20937475722017 @default.
- W2093747572 countsByYear W20937475722018 @default.
- W2093747572 countsByYear W20937475722019 @default.
- W2093747572 countsByYear W20937475722020 @default.
- W2093747572 countsByYear W20937475722021 @default.
- W2093747572 countsByYear W20937475722022 @default.
- W2093747572 countsByYear W20937475722023 @default.
- W2093747572 crossrefType "journal-article" @default.
- W2093747572 hasAuthorship W2093747572A5005438023 @default.
- W2093747572 hasAuthorship W2093747572A5056088517 @default.
- W2093747572 hasBestOaLocation W20937475721 @default.
- W2093747572 hasConcept C11413529 @default.
- W2093747572 hasConcept C12843 @default.
- W2093747572 hasConcept C134306372 @default.
- W2093747572 hasConcept C154945302 @default.
- W2093747572 hasConcept C18903297 @default.
- W2093747572 hasConcept C2776321320 @default.
- W2093747572 hasConcept C2777299769 @default.
- W2093747572 hasConcept C33923547 @default.
- W2093747572 hasConcept C41008148 @default.
- W2093747572 hasConcept C86803240 @default.
- W2093747572 hasConceptScore W2093747572C11413529 @default.
- W2093747572 hasConceptScore W2093747572C12843 @default.
- W2093747572 hasConceptScore W2093747572C134306372 @default.
- W2093747572 hasConceptScore W2093747572C154945302 @default.
- W2093747572 hasConceptScore W2093747572C18903297 @default.
- W2093747572 hasConceptScore W2093747572C2776321320 @default.
- W2093747572 hasConceptScore W2093747572C2777299769 @default.
- W2093747572 hasConceptScore W2093747572C33923547 @default.
- W2093747572 hasConceptScore W2093747572C41008148 @default.
- W2093747572 hasConceptScore W2093747572C86803240 @default.
- W2093747572 hasIssue "2" @default.
- W2093747572 hasLocation W20937475721 @default.
- W2093747572 hasLocation W20937475722 @default.
- W2093747572 hasLocation W20937475723 @default.
- W2093747572 hasOpenAccess W2093747572 @default.
- W2093747572 hasPrimaryLocation W20937475721 @default.
- W2093747572 hasRelatedWork W1979597421 @default.
- W2093747572 hasRelatedWork W2007980826 @default.
- W2093747572 hasRelatedWork W2218034408 @default.
- W2093747572 hasRelatedWork W2263699433 @default.
- W2093747572 hasRelatedWork W2358755282 @default.
- W2093747572 hasRelatedWork W2361861616 @default.
- W2093747572 hasRelatedWork W2377979023 @default.
- W2093747572 hasRelatedWork W2392921965 @default.
- W2093747572 hasRelatedWork W2625833328 @default.
- W2093747572 hasRelatedWork W4245490552 @default.
- W2093747572 hasVolume "11" @default.
- W2093747572 isParatext "false" @default.
- W2093747572 isRetracted "false" @default.
- W2093747572 magId "2093747572" @default.
- W2093747572 workType "article" @default.