Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093920790> ?p ?o ?g. }
- W2093920790 endingPage "1247" @default.
- W2093920790 startingPage "1239" @default.
- W2093920790 abstract "High-frequency pulsed electromagnetic field stimulation is an emerging noninvasive therapy being used clinically to facilitate bone and cutaneous wound healing. Although the mechanisms of action of pulsed electromagnetic fields (PEMF) are unknown, some studies suggest that its effects are mediated by increased nitric oxide (NO), a well-known vasodilator. The authors hypothesized that in the brain, PEMF increase NO, which induces vasodilation, enhances microvascular perfusion and tissue oxygenation, and may be a useful adjunct therapy in stroke and traumatic brain injury. To test this hypothesis, they studied the effect of PEMF on a healthy rat brain with and without NO synthase (NOS) inhibition.In vivo two-photon laser scanning microscopy (2PLSM) was used on the parietal cortex of rat brains to measure microvascular tone and red blood cell (RBC) flow velocity in microvessels with diameters ranging from 3 to 50 μm, which includes capillaries, arterioles, and venules. Tissue oxygenation (reduced nicotinamide adenine dinucleotide [NADH] fluorescence) was also measured before and for 3 hours after PEMF treatment using the FDA-cleared SofPulse device (Ivivi Health Sciences, LLC). To test NO involvement, the NOS inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME) was intravenously injected (10 mg/kg). In a time control group, PEMF were not used. Doppler flux (0.8-mm probe diameter), brain and rectal temperatures, arterial blood pressure, blood gases, hematocrit, and electrolytes were monitored.Pulsed electromagnetic field stimulation significantly dilated cerebral arterioles from a baseline average diameter of 26.4 ± 0.84 μm to 29.1 ± 0.91 μm (11 rats, p < 0.01). Increased blood volume flow through dilated arterioles enhanced capillary flow with an average increase in RBC flow velocity by 5.5% ± 1.3% (p < 0.01). Enhanced microvascular flow increased tissue oxygenation as reflected by a decrease in NADH autofluorescence to 94.7% ± 1.6% of baseline (p < 0.05). Nitric oxide synthase inhibition by L-NAME prevented PEMF-induced changes in arteriolar diameter, microvascular perfusion, and tissue oxygenation (7 rats). No changes in measured parameters were observed throughout the study in the untreated time controls (5 rats).This is the first demonstration of the acute effects of PEMF on cerebral cortical microvascular perfusion and metabolism. Thirty minutes of PEMF treatment induced cerebral arteriolar dilation leading to an increase in microvascular blood flow and tissue oxygenation that persisted for at least 3 hours. The effects of PEMF were mediated by NO, as we have shown in NOS inhibition experiments. These results suggest that PEMF may be an effective treatment for patients after traumatic or ischemic brain injury. Studies on the effect of PEMF on the injured brain are in progress." @default.
- W2093920790 created "2016-06-24" @default.
- W2093920790 creator A5024708875 @default.
- W2093920790 creator A5036423709 @default.
- W2093920790 creator A5039348262 @default.
- W2093920790 creator A5084715893 @default.
- W2093920790 date "2015-05-01" @default.
- W2093920790 modified "2023-10-17" @default.
- W2093920790 title "Increases in microvascular perfusion and tissue oxygenation via pulsed electromagnetic fields in the healthy rat brain" @default.
- W2093920790 cites W1480196957 @default.
- W2093920790 cites W1964864601 @default.
- W2093920790 cites W1967418706 @default.
- W2093920790 cites W1967468790 @default.
- W2093920790 cites W1968236573 @default.
- W2093920790 cites W1971124138 @default.
- W2093920790 cites W1977847624 @default.
- W2093920790 cites W1978149954 @default.
- W2093920790 cites W1979987700 @default.
- W2093920790 cites W1980942671 @default.
- W2093920790 cites W1986920915 @default.
- W2093920790 cites W1992796514 @default.
- W2093920790 cites W1995429934 @default.
- W2093920790 cites W1999200565 @default.
- W2093920790 cites W2000818213 @default.
- W2093920790 cites W2003556968 @default.
- W2093920790 cites W2012237492 @default.
- W2093920790 cites W2018386128 @default.
- W2093920790 cites W2027661937 @default.
- W2093920790 cites W2028997775 @default.
- W2093920790 cites W2030180638 @default.
- W2093920790 cites W2031373494 @default.
- W2093920790 cites W2041697790 @default.
- W2093920790 cites W2041863358 @default.
- W2093920790 cites W2043326850 @default.
- W2093920790 cites W2045283476 @default.
- W2093920790 cites W2047949165 @default.
- W2093920790 cites W2048466215 @default.
- W2093920790 cites W2050806211 @default.
- W2093920790 cites W2052293404 @default.
- W2093920790 cites W2052745664 @default.
- W2093920790 cites W2053060009 @default.
- W2093920790 cites W2053788715 @default.
- W2093920790 cites W2061155036 @default.
- W2093920790 cites W2064888666 @default.
- W2093920790 cites W2072227605 @default.
- W2093920790 cites W2076683520 @default.
- W2093920790 cites W2080798849 @default.
- W2093920790 cites W2089398831 @default.
- W2093920790 cites W2092646401 @default.
- W2093920790 cites W2117494178 @default.
- W2093920790 cites W2120439442 @default.
- W2093920790 cites W2122883537 @default.
- W2093920790 cites W2126112097 @default.
- W2093920790 cites W2132381902 @default.
- W2093920790 cites W2136012625 @default.
- W2093920790 cites W2138629857 @default.
- W2093920790 cites W2143204540 @default.
- W2093920790 cites W2145945064 @default.
- W2093920790 cites W2146152742 @default.
- W2093920790 cites W2162773025 @default.
- W2093920790 cites W2166722928 @default.
- W2093920790 cites W2167445965 @default.
- W2093920790 cites W2406469290 @default.
- W2093920790 cites W2413952240 @default.
- W2093920790 cites W4246744583 @default.
- W2093920790 cites W4253434130 @default.
- W2093920790 cites W93907147 @default.
- W2093920790 doi "https://doi.org/10.3171/2014.8.jns132083" @default.
- W2093920790 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6320690" @default.
- W2093920790 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25343187" @default.
- W2093920790 hasPublicationYear "2015" @default.
- W2093920790 type Work @default.
- W2093920790 sameAs 2093920790 @default.
- W2093920790 citedByCount "38" @default.
- W2093920790 countsByYear W20939207902015 @default.
- W2093920790 countsByYear W20939207902016 @default.
- W2093920790 countsByYear W20939207902018 @default.
- W2093920790 countsByYear W20939207902019 @default.
- W2093920790 countsByYear W20939207902020 @default.
- W2093920790 countsByYear W20939207902021 @default.
- W2093920790 countsByYear W20939207902022 @default.
- W2093920790 countsByYear W20939207902023 @default.
- W2093920790 crossrefType "journal-article" @default.
- W2093920790 hasAuthorship W2093920790A5024708875 @default.
- W2093920790 hasAuthorship W2093920790A5036423709 @default.
- W2093920790 hasAuthorship W2093920790A5039348262 @default.
- W2093920790 hasAuthorship W2093920790A5084715893 @default.
- W2093920790 hasBestOaLocation W20939207902 @default.
- W2093920790 hasConcept C120770815 @default.
- W2093920790 hasConcept C126322002 @default.
- W2093920790 hasConcept C12722491 @default.
- W2093920790 hasConcept C146957229 @default.
- W2093920790 hasConcept C150903083 @default.
- W2093920790 hasConcept C157767197 @default.
- W2093920790 hasConcept C158846371 @default.
- W2093920790 hasConcept C207001950 @default.
- W2093920790 hasConcept C24998067 @default.
- W2093920790 hasConcept C2777622882 @default.