Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093955593> ?p ?o ?g. }
- W2093955593 endingPage "503" @default.
- W2093955593 startingPage "491" @default.
- W2093955593 abstract "4He/3He and 87Sr/86Sr ratios are highly anti-correlated for a suite of seamount glasses from both sides of the Mid-Atlantic Ridge at 26°S; the linear correlation coefficient (r2) is 0.99 for 5 localities at 3 different seamounts. The seamounts are located on crust up to 2.5 myr old, and have 4He/3He as low as 65,400 (3He/4He = 11 RA) and 87Sr/86Sr as high as 0.70350. These isotopic values are significantly lower and higher, respectively, than those for basaltic glasses recovered from 13 localities along the adjacent ridge axis, where the lowest 4He/3He ratio is 92,000 (3He/4He = 7.8 RA) and the highest 87Sr/86Sr is 0.70258. Geophysical studies and the small (1–2%) degree of helium isotope disequilibrium between vesicles and glass for three seamount lavas suggest that the seamounts formed on or near the ridge axis. Because no off-ridge hotspots are present in this area, formation of the seamounts probably involved capture by the ridge of a passive mantle heterogeneity or ‘blob’ during rift propagation and tectonic evolution of the Moore fracture zone. The HeSrNdPb isotopic results for the seamounts show a general trend toward compositions observed for the Réunion hotspot in the Indian Ocean. Collectively, the seamount and ridge axis results are somewhat enigmatic. In addition to the highly correlated He and Sr isotopes at the seamounts, a fair correlation exists between He and Nd isotopes (r2 = 0.70). In contrast, a correlation between He and Pb isotopes is absent for the seamount glasses, while an independent, positive correlation exists between 4He/3He and 206Pb/204Pb for axial lavas. Apparently, different processes are responsible for the seamount HeSrNd isotope relationships and for the nearby ridge HePb isotope relationship. If these relations are only of local significance and result from complications inherent in multi-stage mixing of more than two mantle components, then they imply that the upper mantle may contain domains with variable 4He/3He ratios, in some cases significantly lower than 80,000 (3He/4He> 9 RA). On the other hand, binary mixing adequately explains the linear HeSr isotope trend in the seamount lavas. This linear trend suggests similar 3He/86Sr ratios in the local MORB mantle source and in the source region of the low 4He/3He blob, which is most likely the lower mantle or the transition zone region. This similarity in 3He/86Sr is inconsistent with a lower mantle 3He/86Sr ratio that exceeds the upper mantle ratio by at least a factor of 50, deduced from geochemical models of mantle evolution. Consequently, rare gas models invoking a steady-state upper mantle and quasi-closed lower mantle may be inappropriate if applied at length scales on the order of ∼ 100 km, characteristic of mid-ocean ridge segments." @default.
- W2093955593 created "2016-06-24" @default.
- W2093955593 creator A5011572091 @default.
- W2093955593 creator A5017735799 @default.
- W2093955593 creator A5069188223 @default.
- W2093955593 creator A5086247853 @default.
- W2093955593 date "1996-11-01" @default.
- W2093955593 modified "2023-09-30" @default.
- W2093955593 title "Correlated He and Sr isotope ratios in South Atlantic near-ridge seamounts and implications for mantle dynamics" @default.
- W2093955593 cites W1964260725 @default.
- W2093955593 cites W1967598321 @default.
- W2093955593 cites W1969775100 @default.
- W2093955593 cites W1973144109 @default.
- W2093955593 cites W1974463006 @default.
- W2093955593 cites W1975619655 @default.
- W2093955593 cites W1977793670 @default.
- W2093955593 cites W1980210400 @default.
- W2093955593 cites W1980613973 @default.
- W2093955593 cites W1983032499 @default.
- W2093955593 cites W1983564736 @default.
- W2093955593 cites W1986367206 @default.
- W2093955593 cites W1987021146 @default.
- W2093955593 cites W1987907556 @default.
- W2093955593 cites W1995720681 @default.
- W2093955593 cites W1995857854 @default.
- W2093955593 cites W1997722926 @default.
- W2093955593 cites W2009544440 @default.
- W2093955593 cites W2011991514 @default.
- W2093955593 cites W2014783682 @default.
- W2093955593 cites W2018376581 @default.
- W2093955593 cites W2026999115 @default.
- W2093955593 cites W2028491559 @default.
- W2093955593 cites W2029404697 @default.
- W2093955593 cites W2030992170 @default.
- W2093955593 cites W2031483423 @default.
- W2093955593 cites W2032960086 @default.
- W2093955593 cites W2036144839 @default.
- W2093955593 cites W2046414257 @default.
- W2093955593 cites W2047567126 @default.
- W2093955593 cites W2048457570 @default.
- W2093955593 cites W2051785427 @default.
- W2093955593 cites W2052474296 @default.
- W2093955593 cites W2055768450 @default.
- W2093955593 cites W2056233822 @default.
- W2093955593 cites W2056884602 @default.
- W2093955593 cites W2057366588 @default.
- W2093955593 cites W2058031585 @default.
- W2093955593 cites W2058517389 @default.
- W2093955593 cites W2069380190 @default.
- W2093955593 cites W2070217973 @default.
- W2093955593 cites W2073165465 @default.
- W2093955593 cites W2078745360 @default.
- W2093955593 cites W2079329034 @default.
- W2093955593 cites W2082339235 @default.
- W2093955593 cites W2083093042 @default.
- W2093955593 cites W2083107715 @default.
- W2093955593 cites W2083246526 @default.
- W2093955593 cites W2086465119 @default.
- W2093955593 cites W2090275812 @default.
- W2093955593 cites W2105450203 @default.
- W2093955593 cites W2136601461 @default.
- W2093955593 cites W2137123237 @default.
- W2093955593 cites W2139737137 @default.
- W2093955593 cites W2151405491 @default.
- W2093955593 cites W2161003836 @default.
- W2093955593 cites W2161969821 @default.
- W2093955593 cites W2165084226 @default.
- W2093955593 cites W4245638129 @default.
- W2093955593 cites W4245770643 @default.
- W2093955593 doi "https://doi.org/10.1016/s0012-821x(96)00172-0" @default.
- W2093955593 hasPublicationYear "1996" @default.
- W2093955593 type Work @default.
- W2093955593 sameAs 2093955593 @default.
- W2093955593 citedByCount "39" @default.
- W2093955593 countsByYear W20939555932012 @default.
- W2093955593 countsByYear W20939555932014 @default.
- W2093955593 countsByYear W20939555932015 @default.
- W2093955593 countsByYear W20939555932017 @default.
- W2093955593 countsByYear W20939555932018 @default.
- W2093955593 countsByYear W20939555932019 @default.
- W2093955593 countsByYear W20939555932021 @default.
- W2093955593 countsByYear W20939555932023 @default.
- W2093955593 crossrefType "journal-article" @default.
- W2093955593 hasAuthorship W2093955593A5011572091 @default.
- W2093955593 hasAuthorship W2093955593A5017735799 @default.
- W2093955593 hasAuthorship W2093955593A5069188223 @default.
- W2093955593 hasAuthorship W2093955593A5086247853 @default.
- W2093955593 hasConcept C127313418 @default.
- W2093955593 hasConcept C135559958 @default.
- W2093955593 hasConcept C146481406 @default.
- W2093955593 hasConcept C151730666 @default.
- W2093955593 hasConcept C161509811 @default.
- W2093955593 hasConcept C165205528 @default.
- W2093955593 hasConcept C17409809 @default.
- W2093955593 hasConcept C2776698055 @default.
- W2093955593 hasConcept C2778044477 @default.
- W2093955593 hasConcept C32277403 @default.
- W2093955593 hasConcept C51151373 @default.