Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093961844> ?p ?o ?g. }
- W2093961844 endingPage "509" @default.
- W2093961844 startingPage "482" @default.
- W2093961844 abstract "This paper deals with the problem of predicting traffic flows and updating these predictions when information about OD pairs and/or link flows becomes available. To this end, a Bayesian network is built which is able to take into account the random character of the level of total mean flow and the variability of OD pair flows, together with the random violation of the balance equations for OD pairs and link flows due to extra incoming or exiting traffic at links or to measurement errors. Bayesian networks provide the joint density of all unobserved variables and in particular the corresponding conditional and marginal densities, which allow not only joint predictions, but also probability intervals. The influence of congested traffic can also be taken into consideration by combination of the traffic assignment rules (as SUE, for example) with the Bayesian network model proposed. Some examples illustrate the model and show its practical applicability." @default.
- W2093961844 created "2016-06-24" @default.
- W2093961844 creator A5029246558 @default.
- W2093961844 creator A5037415432 @default.
- W2093961844 creator A5077365381 @default.
- W2093961844 date "2008-06-01" @default.
- W2093961844 modified "2023-10-18" @default.
- W2093961844 title "Predicting traffic flow using Bayesian networks" @default.
- W2093961844 cites W1516271234 @default.
- W2093961844 cites W1970202913 @default.
- W2093961844 cites W1970988048 @default.
- W2093961844 cites W1972180777 @default.
- W2093961844 cites W1974761862 @default.
- W2093961844 cites W1975006524 @default.
- W2093961844 cites W1984567898 @default.
- W2093961844 cites W1991593648 @default.
- W2093961844 cites W1991704836 @default.
- W2093961844 cites W1995315381 @default.
- W2093961844 cites W1996212582 @default.
- W2093961844 cites W2019663200 @default.
- W2093961844 cites W2028893095 @default.
- W2093961844 cites W2030957243 @default.
- W2093961844 cites W2038218627 @default.
- W2093961844 cites W2038606782 @default.
- W2093961844 cites W2039423859 @default.
- W2093961844 cites W2041349827 @default.
- W2093961844 cites W2044807855 @default.
- W2093961844 cites W2053512085 @default.
- W2093961844 cites W2060140077 @default.
- W2093961844 cites W2065881384 @default.
- W2093961844 cites W2074871402 @default.
- W2093961844 cites W2075004209 @default.
- W2093961844 cites W2081152624 @default.
- W2093961844 cites W2081912688 @default.
- W2093961844 cites W2088955532 @default.
- W2093961844 cites W2098128908 @default.
- W2093961844 cites W2131448191 @default.
- W2093961844 cites W2136915294 @default.
- W2093961844 cites W2137632579 @default.
- W2093961844 cites W2137832450 @default.
- W2093961844 cites W2142886676 @default.
- W2093961844 cites W2145039203 @default.
- W2093961844 cites W2145092581 @default.
- W2093961844 cites W2160476305 @default.
- W2093961844 cites W2160544196 @default.
- W2093961844 cites W2172283478 @default.
- W2093961844 doi "https://doi.org/10.1016/j.trb.2007.10.003" @default.
- W2093961844 hasPublicationYear "2008" @default.
- W2093961844 type Work @default.
- W2093961844 sameAs 2093961844 @default.
- W2093961844 citedByCount "168" @default.
- W2093961844 countsByYear W20939618442012 @default.
- W2093961844 countsByYear W20939618442013 @default.
- W2093961844 countsByYear W20939618442014 @default.
- W2093961844 countsByYear W20939618442015 @default.
- W2093961844 countsByYear W20939618442016 @default.
- W2093961844 countsByYear W20939618442017 @default.
- W2093961844 countsByYear W20939618442018 @default.
- W2093961844 countsByYear W20939618442019 @default.
- W2093961844 countsByYear W20939618442020 @default.
- W2093961844 countsByYear W20939618442021 @default.
- W2093961844 countsByYear W20939618442022 @default.
- W2093961844 countsByYear W20939618442023 @default.
- W2093961844 crossrefType "journal-article" @default.
- W2093961844 hasAuthorship W2093961844A5029246558 @default.
- W2093961844 hasAuthorship W2093961844A5037415432 @default.
- W2093961844 hasAuthorship W2093961844A5077365381 @default.
- W2093961844 hasConcept C107673813 @default.
- W2093961844 hasConcept C154945302 @default.
- W2093961844 hasConcept C207512268 @default.
- W2093961844 hasConcept C31258907 @default.
- W2093961844 hasConcept C33724603 @default.
- W2093961844 hasConcept C41008148 @default.
- W2093961844 hasConceptScore W2093961844C107673813 @default.
- W2093961844 hasConceptScore W2093961844C154945302 @default.
- W2093961844 hasConceptScore W2093961844C207512268 @default.
- W2093961844 hasConceptScore W2093961844C31258907 @default.
- W2093961844 hasConceptScore W2093961844C33724603 @default.
- W2093961844 hasConceptScore W2093961844C41008148 @default.
- W2093961844 hasFunder F4320320177 @default.
- W2093961844 hasFunder F4320321764 @default.
- W2093961844 hasFunder F4320323737 @default.
- W2093961844 hasIssue "5" @default.
- W2093961844 hasLocation W20939618441 @default.
- W2093961844 hasOpenAccess W2093961844 @default.
- W2093961844 hasPrimaryLocation W20939618441 @default.
- W2093961844 hasRelatedWork W1502219449 @default.
- W2093961844 hasRelatedWork W1598044768 @default.
- W2093961844 hasRelatedWork W1801574842 @default.
- W2093961844 hasRelatedWork W2370221588 @default.
- W2093961844 hasRelatedWork W2589794759 @default.
- W2093961844 hasRelatedWork W2950617284 @default.
- W2093961844 hasRelatedWork W3107474891 @default.
- W2093961844 hasRelatedWork W4236579886 @default.
- W2093961844 hasRelatedWork W4285307216 @default.
- W2093961844 hasRelatedWork W2622501400 @default.
- W2093961844 hasVolume "42" @default.
- W2093961844 isParatext "false" @default.