Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093986209> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2093986209 abstract "The majority of anomaly detection processes used for hyperspectral image data are based on pixel-by-pixel whitening and thresholding operations using local area statistics. This paper discusses an alternative approach to anomaly detection in which a mixture model is fitted to the whole of the image. This mixture model may be used to segment the image into component memberships and these may, in turn, be used for anomaly detection. In this study the mixture model is generated for the whole scene using the stochastic expectation maximization (SEM) algorithm. This is parameterized such that mixture components consisting of small numbers of pixels are eliminated. The maximum a-posteriori probability (MAP) mixture component for each pixel is then determined. The pixel may then be examined using a conventional statistical hypothesis test to see whether it is plausible that it was drawn from the distribution of the identified component, at a given significance level. This anomaly detection process has been examined using both synthetic and real hyperspectral imagery and results are presented here for real data containing no known military targets and for synthesized imagery which includes military target pixels. A range of results is presented for different parameterizations of the SEM algorithm and significance test. These results include the component map of the imagery and anomalous pixel maps at given significance levels." @default.
- W2093986209 created "2016-06-24" @default.
- W2093986209 creator A5064440449 @default.
- W2093986209 date "2004-12-08" @default.
- W2093986209 modified "2023-09-23" @default.
- W2093986209 title "Mixture models for anomaly detection in hyperspectral imagery" @default.
- W2093986209 cites W1971180200 @default.
- W2093986209 cites W2002442311 @default.
- W2093986209 cites W2047870694 @default.
- W2093986209 cites W2049633694 @default.
- W2093986209 doi "https://doi.org/10.1117/12.578721" @default.
- W2093986209 hasPublicationYear "2004" @default.
- W2093986209 type Work @default.
- W2093986209 sameAs 2093986209 @default.
- W2093986209 citedByCount "4" @default.
- W2093986209 countsByYear W20939862092017 @default.
- W2093986209 crossrefType "proceedings-article" @default.
- W2093986209 hasAuthorship W2093986209A5064440449 @default.
- W2093986209 hasConcept C105795698 @default.
- W2093986209 hasConcept C114289077 @default.
- W2093986209 hasConcept C115961682 @default.
- W2093986209 hasConcept C121332964 @default.
- W2093986209 hasConcept C12997251 @default.
- W2093986209 hasConcept C153180895 @default.
- W2093986209 hasConcept C154945302 @default.
- W2093986209 hasConcept C159078339 @default.
- W2093986209 hasConcept C160633673 @default.
- W2093986209 hasConcept C182081679 @default.
- W2093986209 hasConcept C191178318 @default.
- W2093986209 hasConcept C26873012 @default.
- W2093986209 hasConcept C31972630 @default.
- W2093986209 hasConcept C33923547 @default.
- W2093986209 hasConcept C41008148 @default.
- W2093986209 hasConcept C49781872 @default.
- W2093986209 hasConcept C61224824 @default.
- W2093986209 hasConcept C739882 @default.
- W2093986209 hasConceptScore W2093986209C105795698 @default.
- W2093986209 hasConceptScore W2093986209C114289077 @default.
- W2093986209 hasConceptScore W2093986209C115961682 @default.
- W2093986209 hasConceptScore W2093986209C121332964 @default.
- W2093986209 hasConceptScore W2093986209C12997251 @default.
- W2093986209 hasConceptScore W2093986209C153180895 @default.
- W2093986209 hasConceptScore W2093986209C154945302 @default.
- W2093986209 hasConceptScore W2093986209C159078339 @default.
- W2093986209 hasConceptScore W2093986209C160633673 @default.
- W2093986209 hasConceptScore W2093986209C182081679 @default.
- W2093986209 hasConceptScore W2093986209C191178318 @default.
- W2093986209 hasConceptScore W2093986209C26873012 @default.
- W2093986209 hasConceptScore W2093986209C31972630 @default.
- W2093986209 hasConceptScore W2093986209C33923547 @default.
- W2093986209 hasConceptScore W2093986209C41008148 @default.
- W2093986209 hasConceptScore W2093986209C49781872 @default.
- W2093986209 hasConceptScore W2093986209C61224824 @default.
- W2093986209 hasConceptScore W2093986209C739882 @default.
- W2093986209 hasLocation W20939862091 @default.
- W2093986209 hasOpenAccess W2093986209 @default.
- W2093986209 hasPrimaryLocation W20939862091 @default.
- W2093986209 hasRelatedWork W2042394505 @default.
- W2093986209 hasRelatedWork W2076923495 @default.
- W2093986209 hasRelatedWork W2080624298 @default.
- W2093986209 hasRelatedWork W2090082185 @default.
- W2093986209 hasRelatedWork W2093986209 @default.
- W2093986209 hasRelatedWork W2107629830 @default.
- W2093986209 hasRelatedWork W2117338621 @default.
- W2093986209 hasRelatedWork W2368246176 @default.
- W2093986209 hasRelatedWork W2542932817 @default.
- W2093986209 hasRelatedWork W3184368071 @default.
- W2093986209 isParatext "false" @default.
- W2093986209 isRetracted "false" @default.
- W2093986209 magId "2093986209" @default.
- W2093986209 workType "article" @default.