Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094005143> ?p ?o ?g. }
- W2094005143 endingPage "1297" @default.
- W2094005143 startingPage "1281" @default.
- W2094005143 abstract "Optimal exploitation strategies were studied for an animal population in a Markovian (stochastic, serially correlated) environment. This is a general case and encompasses a number of important special cases as simplifications. Extensive empirical data on the Mallard (Anas platyrhynchos) were used as an example of general theory. The number of small ponds on the central breeding grounds was used as an index to the state of the environment. A general mathematical model was formulated to provide a synthesis of the existing literature, estimates of parameters developed from an analysis of data, and hypotheses regarding the specific effect of exploitation on total survival. The literature and analysis of data were inconclusive concerning the effect of exploitation on survival. Therefore, two hypotheses were explored: (1) exploitation mortality represents a largely additive form of mortality, and (2) exploitation mortality is compensatory with other forms of mortality, at least to some threshold level. Models incorporating these two hypotheses were formulated as stochastic dynamic programming models and optimal exploitation strategies were derived numerically on a digital computer. Optimal exploitation strategies were found to exist under the rather general conditions. Direct feedback control was an integral component in the optimal decision—making process. Optimal exploitation was found to be substantially different depending upon the hypothesis regarding the effect of exploitation on the population. If we assume that exploitation is largely an additive force of mortality in Mallards, then optimal exploitation decisions are a convex function of the size of the breeding population and a linear or slight concave function of the environmental conditions. Under the hypothesis of compensatory mortality forces, optimal exploitation decisions are approximately linearly related to the size of the Mallard breeding population. Dynamic programming is suggested as a very general formulation for realistic solutions to the general optimal exploitation problem. The concepts of state vectors and stage transformations are completely general. Populations can be modeled stochastically and the objective function can include extra—biological factors. The optimal level of exploitation in year t must be based on the observed size of the population and the state of the environment in year t unless the dynamics of the population, the state of the environment, and the result of the exploitation decisions are completely deterministic. Exploitation based on an average harvest, or harvest rate, or designed to maintain a constant breeding population size is inefficient." @default.
- W2094005143 created "2016-06-24" @default.
- W2094005143 creator A5033147091 @default.
- W2094005143 date "1975-10-01" @default.
- W2094005143 modified "2023-10-07" @default.
- W2094005143 title "Optimal Exploitation Strategies for an Animal Population in a Markovian Environment: A Theory and an Example" @default.
- W2094005143 cites W1444915323 @default.
- W2094005143 cites W1532540194 @default.
- W2094005143 cites W1537115439 @default.
- W2094005143 cites W1545643184 @default.
- W2094005143 cites W1546755579 @default.
- W2094005143 cites W1596355603 @default.
- W2094005143 cites W1600497354 @default.
- W2094005143 cites W171641366 @default.
- W2094005143 cites W177959126 @default.
- W2094005143 cites W1944022669 @default.
- W2094005143 cites W1978865199 @default.
- W2094005143 cites W1985941935 @default.
- W2094005143 cites W1993458830 @default.
- W2094005143 cites W2003269958 @default.
- W2094005143 cites W2010362952 @default.
- W2094005143 cites W2013738122 @default.
- W2094005143 cites W2018021029 @default.
- W2094005143 cites W2028145673 @default.
- W2094005143 cites W2031394548 @default.
- W2094005143 cites W2035058341 @default.
- W2094005143 cites W2037306313 @default.
- W2094005143 cites W2043074149 @default.
- W2094005143 cites W2043222796 @default.
- W2094005143 cites W2044365750 @default.
- W2094005143 cites W2051095001 @default.
- W2094005143 cites W2062533874 @default.
- W2094005143 cites W2072203233 @default.
- W2094005143 cites W2074802310 @default.
- W2094005143 cites W2077076421 @default.
- W2094005143 cites W2091107385 @default.
- W2094005143 cites W2093050382 @default.
- W2094005143 cites W2105996830 @default.
- W2094005143 cites W2138180048 @default.
- W2094005143 cites W2276494279 @default.
- W2094005143 cites W232782485 @default.
- W2094005143 cites W2332254066 @default.
- W2094005143 cites W2332951359 @default.
- W2094005143 cites W2341171179 @default.
- W2094005143 cites W2521957098 @default.
- W2094005143 cites W2796610752 @default.
- W2094005143 cites W2970943183 @default.
- W2094005143 cites W423140371 @default.
- W2094005143 cites W565499830 @default.
- W2094005143 cites W657006023 @default.
- W2094005143 cites W1012549338 @default.
- W2094005143 cites W1506537513 @default.
- W2094005143 cites W630931958 @default.
- W2094005143 doi "https://doi.org/10.2307/1934697" @default.
- W2094005143 hasPublicationYear "1975" @default.
- W2094005143 type Work @default.
- W2094005143 sameAs 2094005143 @default.
- W2094005143 citedByCount "69" @default.
- W2094005143 countsByYear W20940051432012 @default.
- W2094005143 countsByYear W20940051432013 @default.
- W2094005143 countsByYear W20940051432015 @default.
- W2094005143 countsByYear W20940051432016 @default.
- W2094005143 countsByYear W20940051432017 @default.
- W2094005143 countsByYear W20940051432018 @default.
- W2094005143 countsByYear W20940051432019 @default.
- W2094005143 countsByYear W20940051432020 @default.
- W2094005143 countsByYear W20940051432023 @default.
- W2094005143 crossrefType "journal-article" @default.
- W2094005143 hasAuthorship W2094005143A5033147091 @default.
- W2094005143 hasConcept C105795698 @default.
- W2094005143 hasConcept C126255220 @default.
- W2094005143 hasConcept C14036430 @default.
- W2094005143 hasConcept C144024400 @default.
- W2094005143 hasConcept C149782125 @default.
- W2094005143 hasConcept C149923435 @default.
- W2094005143 hasConcept C159886148 @default.
- W2094005143 hasConcept C18903297 @default.
- W2094005143 hasConcept C2778378574 @default.
- W2094005143 hasConcept C2908647359 @default.
- W2094005143 hasConcept C33923547 @default.
- W2094005143 hasConcept C37404715 @default.
- W2094005143 hasConcept C78458016 @default.
- W2094005143 hasConcept C86803240 @default.
- W2094005143 hasConceptScore W2094005143C105795698 @default.
- W2094005143 hasConceptScore W2094005143C126255220 @default.
- W2094005143 hasConceptScore W2094005143C14036430 @default.
- W2094005143 hasConceptScore W2094005143C144024400 @default.
- W2094005143 hasConceptScore W2094005143C149782125 @default.
- W2094005143 hasConceptScore W2094005143C149923435 @default.
- W2094005143 hasConceptScore W2094005143C159886148 @default.
- W2094005143 hasConceptScore W2094005143C18903297 @default.
- W2094005143 hasConceptScore W2094005143C2778378574 @default.
- W2094005143 hasConceptScore W2094005143C2908647359 @default.
- W2094005143 hasConceptScore W2094005143C33923547 @default.
- W2094005143 hasConceptScore W2094005143C37404715 @default.
- W2094005143 hasConceptScore W2094005143C78458016 @default.
- W2094005143 hasConceptScore W2094005143C86803240 @default.
- W2094005143 hasIssue "6" @default.