Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094012298> ?p ?o ?g. }
- W2094012298 endingPage "27" @default.
- W2094012298 startingPage "27" @default.
- W2094012298 abstract "Context. Enumeration of cryptic/rare or widely distributed mammal species is exceedingly difficult for wildlife managers using standard survey methods. Individual identification via non-invasive hair-DNA methods offers great promise in extending the information available from hairs collected to survey for presence/absence of a species. However, surprisingly few wildlife studies have attempted this because of potential limitations with the field method and genetic samples. Aim. The applicability of hair DNA to identify individuals and estimate numbers was assessed for a rare, medium-sized Australian marsupial carnivore, the spotted-tailed quoll (Dasyurus maculatus). Methods. Hair samples were obtained remotely in the field with baited hair-sampling devices (known as handi-glaze hair tubes) that permit multiple visitations by individuals and species. A hierarchical approach developed and applied to the DNA extraction and PCR protocol, based on single and four pooled hairs of each collected sample, was used to assess genotype reliability (cross-species DNA mixing, allelic dropout and false allele errors) and enumerate the local study population. These results were compared against a concurrent live-cage trapping survey that was equivalent in scale and trap density to enable a rigorous evaluation of the efficiency and reliability of the DNA-based hair-sampling technique. Key results. Of the 288 hair devices deployed, 52 (18%) captured spotted-tailed quoll hair and the majority (90%) of these samples provided adequate DNA to genetically profile individuals at 10 microsatellite loci and a sexing marker. The hierarchical approach provided a feasible way to verify whether cross-species DNA mixing had occurred in the pooled-hair DNA extracts by comparing the results against the independent single-hair DNA extract, and assess genotyping reliability of both DNA concentrations. Fewer individuals were detected using hair-sampling (n = 16) than live-trapping (n = 21), despite hair-sampling occurring over a longer period (40 cf. 26 nights). Conclusions. The population-level information gained by the DNA-based technologies adds considerable value to the remote hair-sampling method which up until the present study had been used to detect the presence of medium-sized mammals. Our study demonstrated the utility of the DNA-based hair-sampling method to identify spotted-tailed quoll individuals and for surveying local populations. However, improvements to the hair-sampling method, such as increasing the density of stations or the provision of a food reward, should be considered to enhance sampling efficiency to allow the enumeration of local populations. Implications. The use of remote hair-sampling devices that permit multiple visitations and do not require daily collection can be feasible and reliable to genetically identify individuals when coupled with appropriate strategies. By combining single- and pooled-hair DNA extracts, a good compromise between laboratory efficiency and data integrity is afforded." @default.
- W2094012298 created "2016-06-24" @default.
- W2094012298 creator A5043056260 @default.
- W2094012298 creator A5048509658 @default.
- W2094012298 creator A5073802325 @default.
- W2094012298 creator A5074259277 @default.
- W2094012298 creator A5087001745 @default.
- W2094012298 date "2010-01-01" @default.
- W2094012298 modified "2023-09-26" @default.
- W2094012298 title "Advancement to hair-sampling surveys of a medium-sized mammal: DNA-based individual identification and population estimation of a rare Australian marsupial, the spotted-tailed quoll (Dasyurus maculatus)" @default.
- W2094012298 cites W1225430761 @default.
- W2094012298 cites W1480415937 @default.
- W2094012298 cites W1551022046 @default.
- W2094012298 cites W1930468653 @default.
- W2094012298 cites W1968410339 @default.
- W2094012298 cites W1969952070 @default.
- W2094012298 cites W1972906909 @default.
- W2094012298 cites W1983521138 @default.
- W2094012298 cites W1996618351 @default.
- W2094012298 cites W2003349472 @default.
- W2094012298 cites W2004444667 @default.
- W2094012298 cites W2031846047 @default.
- W2094012298 cites W2040620848 @default.
- W2094012298 cites W2059117655 @default.
- W2094012298 cites W2063392648 @default.
- W2094012298 cites W2063635717 @default.
- W2094012298 cites W2071316283 @default.
- W2094012298 cites W2072677760 @default.
- W2094012298 cites W2073180970 @default.
- W2094012298 cites W2073555147 @default.
- W2094012298 cites W2076364172 @default.
- W2094012298 cites W2081147724 @default.
- W2094012298 cites W2081769556 @default.
- W2094012298 cites W2094438125 @default.
- W2094012298 cites W2095933362 @default.
- W2094012298 cites W2113326205 @default.
- W2094012298 cites W2116052220 @default.
- W2094012298 cites W2120310293 @default.
- W2094012298 cites W2125099607 @default.
- W2094012298 cites W2129676960 @default.
- W2094012298 cites W2130098503 @default.
- W2094012298 cites W2141163753 @default.
- W2094012298 cites W2146734033 @default.
- W2094012298 cites W2147568156 @default.
- W2094012298 cites W2150279298 @default.
- W2094012298 cites W2160247096 @default.
- W2094012298 cites W2164593346 @default.
- W2094012298 cites W2165522474 @default.
- W2094012298 cites W2173481561 @default.
- W2094012298 cites W2178173260 @default.
- W2094012298 cites W2178615060 @default.
- W2094012298 cites W2180587647 @default.
- W2094012298 cites W2314793231 @default.
- W2094012298 cites W2528792229 @default.
- W2094012298 cites W2802746771 @default.
- W2094012298 doi "https://doi.org/10.1071/wr09087" @default.
- W2094012298 hasPublicationYear "2010" @default.
- W2094012298 type Work @default.
- W2094012298 sameAs 2094012298 @default.
- W2094012298 citedByCount "17" @default.
- W2094012298 countsByYear W20940122982012 @default.
- W2094012298 countsByYear W20940122982013 @default.
- W2094012298 countsByYear W20940122982014 @default.
- W2094012298 countsByYear W20940122982016 @default.
- W2094012298 countsByYear W20940122982017 @default.
- W2094012298 countsByYear W20940122982018 @default.
- W2094012298 countsByYear W20940122982020 @default.
- W2094012298 countsByYear W20940122982021 @default.
- W2094012298 countsByYear W20940122982022 @default.
- W2094012298 crossrefType "journal-article" @default.
- W2094012298 hasAuthorship W2094012298A5043056260 @default.
- W2094012298 hasAuthorship W2094012298A5048509658 @default.
- W2094012298 hasAuthorship W2094012298A5073802325 @default.
- W2094012298 hasAuthorship W2094012298A5074259277 @default.
- W2094012298 hasAuthorship W2094012298A5087001745 @default.
- W2094012298 hasConcept C104317684 @default.
- W2094012298 hasConcept C144024400 @default.
- W2094012298 hasConcept C149923435 @default.
- W2094012298 hasConcept C180754005 @default.
- W2094012298 hasConcept C18903297 @default.
- W2094012298 hasConcept C2777042810 @default.
- W2094012298 hasConcept C2908647359 @default.
- W2094012298 hasConcept C29376679 @default.
- W2094012298 hasConcept C49105822 @default.
- W2094012298 hasConcept C54355233 @default.
- W2094012298 hasConcept C61320498 @default.
- W2094012298 hasConcept C78063203 @default.
- W2094012298 hasConcept C86803240 @default.
- W2094012298 hasConcept C90856448 @default.
- W2094012298 hasConceptScore W2094012298C104317684 @default.
- W2094012298 hasConceptScore W2094012298C144024400 @default.
- W2094012298 hasConceptScore W2094012298C149923435 @default.
- W2094012298 hasConceptScore W2094012298C180754005 @default.
- W2094012298 hasConceptScore W2094012298C18903297 @default.
- W2094012298 hasConceptScore W2094012298C2777042810 @default.
- W2094012298 hasConceptScore W2094012298C2908647359 @default.
- W2094012298 hasConceptScore W2094012298C29376679 @default.
- W2094012298 hasConceptScore W2094012298C49105822 @default.