Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094025682> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2094025682 endingPage "1438" @default.
- W2094025682 startingPage "1434" @default.
- W2094025682 abstract "Let $X^{(n)} = (X_1, cdots, X_n)$ be a random sample of size $n$ from the distribution of a real-valued random variable $X$ with an absolutely continuous distribution function $F$ and a density function $f$. Rosenblatt (1956) showed that in this setting there exists no unbiased estimator of $f$ based on the order statistics. His result follows from the fact that the empirical distribution function is not absolutely continuous. He also assumed that $f$ is continuous, but this condition is unnecessary. Rosenblatt's result also arises as a consequence of general results by Bickel and Lehmann (1969) on unbiased estimation in convex families, such as the family of all such $F$ (above). A number of writers (Kolmogorov (1950), Schmetterer (1960), Ghurye and Olkin (1969)) have obtained unbiased estimators of particular normal-related families as well as for other estimable functions. Washio, Morimoto and Ikeda (1956) considered related questions for the Koopman-Pitman family of densities, and Tate (1959) confined his attention to functions of scale and location parameters. A question arises as to exactly when unbiased--uniform minimum variance unbiased (UMVU)--estimators of density functions exist and when they do not. In a recent publication, Lumel'skii and Sapozhnikov (1969) considered such a question in relation to estimating the density function at a point, whereas, in this paper our definition of unbiasedness requires the estimator to be unbiased at every point. The so-called Bayesian methods they employ yield estimators for most of the well-known families of distributions as well as for several types of $p$-dimensional discrete distributions. In Section 2 we formulate the problem in a fairly general setting and obtain results in terms of unbiased estimators of probability measures (or distribution functions) which always exist. In Section 3 we consider examples to illustrate the theory of the preceding section and in Section 4 give a theorem which generalizes a lemma stated by Ghurye and Olkin (1969) which formalizes the approach used by Schmetterer (1960) for obtaining unbiased estimators of certain types of parametric functions." @default.
- W2094025682 created "2016-06-24" @default.
- W2094025682 creator A5013183038 @default.
- W2094025682 creator A5052785465 @default.
- W2094025682 date "1971-08-01" @default.
- W2094025682 modified "2023-10-05" @default.
- W2094025682 title "On Unbiased Estimation of Density Functions" @default.
- W2094025682 cites W1551363936 @default.
- W2094025682 cites W1973415771 @default.
- W2094025682 cites W1984617093 @default.
- W2094025682 cites W1984819717 @default.
- W2094025682 cites W1993700735 @default.
- W2094025682 cites W1997338824 @default.
- W2094025682 cites W2014268383 @default.
- W2094025682 cites W2018538722 @default.
- W2094025682 cites W2019630042 @default.
- W2094025682 cites W2021279807 @default.
- W2094025682 cites W2022184054 @default.
- W2094025682 cites W2026612985 @default.
- W2094025682 cites W2028159044 @default.
- W2094025682 cites W2037269865 @default.
- W2094025682 cites W2045638068 @default.
- W2094025682 cites W2088484188 @default.
- W2094025682 cites W2091436557 @default.
- W2094025682 cites W2092003140 @default.
- W2094025682 cites W2118020555 @default.
- W2094025682 cites W2118091783 @default.
- W2094025682 cites W2119135250 @default.
- W2094025682 cites W2222224277 @default.
- W2094025682 cites W2904863873 @default.
- W2094025682 doi "https://doi.org/10.1214/aoms/1177693255" @default.
- W2094025682 hasPublicationYear "1971" @default.
- W2094025682 type Work @default.
- W2094025682 sameAs 2094025682 @default.
- W2094025682 citedByCount "22" @default.
- W2094025682 countsByYear W20940256822016 @default.
- W2094025682 countsByYear W20940256822017 @default.
- W2094025682 countsByYear W20940256822018 @default.
- W2094025682 crossrefType "journal-article" @default.
- W2094025682 hasAuthorship W2094025682A5013183038 @default.
- W2094025682 hasAuthorship W2094025682A5052785465 @default.
- W2094025682 hasBestOaLocation W20940256821 @default.
- W2094025682 hasConcept C105795698 @default.
- W2094025682 hasConcept C122123141 @default.
- W2094025682 hasConcept C134962040 @default.
- W2094025682 hasConcept C165646398 @default.
- W2094025682 hasConcept C185429906 @default.
- W2094025682 hasConcept C191393472 @default.
- W2094025682 hasConcept C196323059 @default.
- W2094025682 hasConcept C197055811 @default.
- W2094025682 hasConcept C28826006 @default.
- W2094025682 hasConcept C33923547 @default.
- W2094025682 hasConcept C44082924 @default.
- W2094025682 hasConceptScore W2094025682C105795698 @default.
- W2094025682 hasConceptScore W2094025682C122123141 @default.
- W2094025682 hasConceptScore W2094025682C134962040 @default.
- W2094025682 hasConceptScore W2094025682C165646398 @default.
- W2094025682 hasConceptScore W2094025682C185429906 @default.
- W2094025682 hasConceptScore W2094025682C191393472 @default.
- W2094025682 hasConceptScore W2094025682C196323059 @default.
- W2094025682 hasConceptScore W2094025682C197055811 @default.
- W2094025682 hasConceptScore W2094025682C28826006 @default.
- W2094025682 hasConceptScore W2094025682C33923547 @default.
- W2094025682 hasConceptScore W2094025682C44082924 @default.
- W2094025682 hasIssue "4" @default.
- W2094025682 hasLocation W20940256821 @default.
- W2094025682 hasLocation W20940256822 @default.
- W2094025682 hasOpenAccess W2094025682 @default.
- W2094025682 hasPrimaryLocation W20940256821 @default.
- W2094025682 hasRelatedWork W1513121561 @default.
- W2094025682 hasRelatedWork W1586415191 @default.
- W2094025682 hasRelatedWork W1983230375 @default.
- W2094025682 hasRelatedWork W2065970534 @default.
- W2094025682 hasRelatedWork W2094210009 @default.
- W2094025682 hasRelatedWork W2095077653 @default.
- W2094025682 hasRelatedWork W2910434125 @default.
- W2094025682 hasRelatedWork W3135333159 @default.
- W2094025682 hasRelatedWork W4238867187 @default.
- W2094025682 hasRelatedWork W4307543038 @default.
- W2094025682 hasVolume "42" @default.
- W2094025682 isParatext "false" @default.
- W2094025682 isRetracted "false" @default.
- W2094025682 magId "2094025682" @default.
- W2094025682 workType "article" @default.