Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094099988> ?p ?o ?g. }
- W2094099988 endingPage "271" @default.
- W2094099988 startingPage "259" @default.
- W2094099988 abstract "Fault diagnosis of gearboxes, especially the gears and bearings, is of great importance to the long-term safe operation. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the health condition of the gearbox in a timely manner to eliminate the impending faults. However, useful fault detection information is often submerged in heavy background noise. Thereby, a new fault detection method for gearboxes using the blind source separation (BSS) and nonlinear feature extraction techniques is presented in this paper. The nonstationary vibration signals were analyzed to reveal the operation state of the gearbox. The kernel independent component analysis (KICA) algorithm was used hereby as the BSS approach for the mixed observation signals of the gearbox vibration to discover the characteristic vibration source associated with the gearbox faults. Then the wavelet packet transform (WPT) and empirical mode decomposition (EMD) nonlinear analysis methods were employed to deal with the nonstationary vibrations to extract the original fault feature vector. Moreover, the locally linear embedding (LLE) algorithm was performed as the nonlinear feature reduction technique to attain distinct features from the feature vector. Lastly, the fuzzy k-nearest neighbor (FKNN) was applied to the fault pattern identification of the gearbox. Two case studies were carried out to evaluate the effectiveness of the proposed diagnostic approach. One is for the gear fault diagnosis, and the other is to diagnose the rolling bearing faults of the gearbox. The nonstationary vibration data was acquired from the gear and rolling bearing fault test-beds, respectively. The experimental test results show that sensitive fault features can be extracted after the KICA processing, and the proposed diagnostic system is effective for the multi-fault diagnosis of the gears and rolling bearings. In addition, the proposed method can achieve higher performance than that without KICA processing with respect to the classification rate." @default.
- W2094099988 created "2016-06-24" @default.
- W2094099988 creator A5003968607 @default.
- W2094099988 creator A5020451053 @default.
- W2094099988 creator A5027475930 @default.
- W2094099988 creator A5036514560 @default.
- W2094099988 creator A5043327084 @default.
- W2094099988 creator A5072823996 @default.
- W2094099988 date "2013-01-01" @default.
- W2094099988 modified "2023-10-10" @default.
- W2094099988 title "Blind vibration component separation and nonlinear feature extraction applied to the nonstationary vibration signals for the gearbox multi-fault diagnosis" @default.
- W2094099988 cites W1964792233 @default.
- W2094099988 cites W1965241240 @default.
- W2094099988 cites W1974465402 @default.
- W2094099988 cites W1976348027 @default.
- W2094099988 cites W1978443650 @default.
- W2094099988 cites W1984036968 @default.
- W2094099988 cites W2001141328 @default.
- W2094099988 cites W2001903231 @default.
- W2094099988 cites W2002034577 @default.
- W2094099988 cites W2015605478 @default.
- W2094099988 cites W2016404742 @default.
- W2094099988 cites W2019380100 @default.
- W2094099988 cites W2020675340 @default.
- W2094099988 cites W2026282013 @default.
- W2094099988 cites W2040708543 @default.
- W2094099988 cites W2040895929 @default.
- W2094099988 cites W2048984787 @default.
- W2094099988 cites W2051114789 @default.
- W2094099988 cites W2053186076 @default.
- W2094099988 cites W2056644008 @default.
- W2094099988 cites W2072992915 @default.
- W2094099988 cites W2078140646 @default.
- W2094099988 cites W2094478475 @default.
- W2094099988 cites W2097308346 @default.
- W2094099988 cites W2102211123 @default.
- W2094099988 cites W2117691915 @default.
- W2094099988 cites W2137421215 @default.
- W2094099988 cites W2151164317 @default.
- W2094099988 doi "https://doi.org/10.1016/j.measurement.2012.06.013" @default.
- W2094099988 hasPublicationYear "2013" @default.
- W2094099988 type Work @default.
- W2094099988 sameAs 2094099988 @default.
- W2094099988 citedByCount "121" @default.
- W2094099988 countsByYear W20940999882012 @default.
- W2094099988 countsByYear W20940999882013 @default.
- W2094099988 countsByYear W20940999882014 @default.
- W2094099988 countsByYear W20940999882015 @default.
- W2094099988 countsByYear W20940999882016 @default.
- W2094099988 countsByYear W20940999882017 @default.
- W2094099988 countsByYear W20940999882018 @default.
- W2094099988 countsByYear W20940999882019 @default.
- W2094099988 countsByYear W20940999882020 @default.
- W2094099988 countsByYear W20940999882021 @default.
- W2094099988 countsByYear W20940999882022 @default.
- W2094099988 countsByYear W20940999882023 @default.
- W2094099988 crossrefType "journal-article" @default.
- W2094099988 hasAuthorship W2094099988A5003968607 @default.
- W2094099988 hasAuthorship W2094099988A5020451053 @default.
- W2094099988 hasAuthorship W2094099988A5027475930 @default.
- W2094099988 hasAuthorship W2094099988A5036514560 @default.
- W2094099988 hasAuthorship W2094099988A5043327084 @default.
- W2094099988 hasAuthorship W2094099988A5072823996 @default.
- W2094099988 hasConcept C119857082 @default.
- W2094099988 hasConcept C120317606 @default.
- W2094099988 hasConcept C121332964 @default.
- W2094099988 hasConcept C127162648 @default.
- W2094099988 hasConcept C127313418 @default.
- W2094099988 hasConcept C127413603 @default.
- W2094099988 hasConcept C153180895 @default.
- W2094099988 hasConcept C154945302 @default.
- W2094099988 hasConcept C158622935 @default.
- W2094099988 hasConcept C165205528 @default.
- W2094099988 hasConcept C168167062 @default.
- W2094099988 hasConcept C175551986 @default.
- W2094099988 hasConcept C185592680 @default.
- W2094099988 hasConcept C198394728 @default.
- W2094099988 hasConcept C24890656 @default.
- W2094099988 hasConcept C2775924081 @default.
- W2094099988 hasConcept C2776061190 @default.
- W2094099988 hasConcept C41008148 @default.
- W2094099988 hasConcept C43617362 @default.
- W2094099988 hasConcept C4725764 @default.
- W2094099988 hasConcept C47446073 @default.
- W2094099988 hasConcept C51432778 @default.
- W2094099988 hasConcept C52622490 @default.
- W2094099988 hasConcept C62520636 @default.
- W2094099988 hasConcept C66938386 @default.
- W2094099988 hasConcept C76155785 @default.
- W2094099988 hasConcept C97355855 @default.
- W2094099988 hasConceptScore W2094099988C119857082 @default.
- W2094099988 hasConceptScore W2094099988C120317606 @default.
- W2094099988 hasConceptScore W2094099988C121332964 @default.
- W2094099988 hasConceptScore W2094099988C127162648 @default.
- W2094099988 hasConceptScore W2094099988C127313418 @default.
- W2094099988 hasConceptScore W2094099988C127413603 @default.
- W2094099988 hasConceptScore W2094099988C153180895 @default.
- W2094099988 hasConceptScore W2094099988C154945302 @default.