Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094131489> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2094131489 endingPage "5033" @default.
- W2094131489 startingPage "5015" @default.
- W2094131489 abstract "In dimensions 2 and 3 it is well known that given two orientation-preserving hyperbolic isometries that generate a non-elementary group, one can find a triple of involutions so that each isometry can be expressed as a product of two of the three involutions; in this case, we say that the isometries are linked. In this paper, we investigate the extent to which a pair of isometries in higher dimensions can be linked. This question separates naturally into two parts. In the first part, we determine the least number of involutions needed to express an isometry as a product, and give two applications of our results; the second part is devoted to the question of linking. In general, the commutator (involution) length of a group element is the least number of elements needed to express that element as a product of commutators (involutions), and the commutator (involution) length of the group is the supremum over all commutator (involution) lengths. Let ${mathcal G}^n$ be the group of orientation-preserving isometries of one of the space forms, the $(n - 1)$-sphere, Euclidean $n$-space, hyperbolic $n$-space. For $n geq 3$, we show that the commutator length of ${mathcal G}^n$ is 1; i.e., every element of ${mathcal G}^n$ is a commutator. We also show that every element of ${mathcal G}^n$ can be written as a product of two involutions, not necessarily orientation-preserving; and, depending on the particular space and on the congruence class of $;n!mod 4$, the involution length of ${mathcal G}^n$ is either 2 or 3. In the second part of the paper, we show that all pairs in $SO^4$ are linked but that the generic pair in the orientation-preserving isometries of hyperbolic 4-space or in ${mathcal G}^n$, $n geq 5$, is not." @default.
- W2094131489 created "2016-06-24" @default.
- W2094131489 creator A5067477971 @default.
- W2094131489 creator A5078002315 @default.
- W2094131489 date "2012-09-01" @default.
- W2094131489 modified "2023-09-29" @default.
- W2094131489 title "Space form isometries as commutators and products of involutions" @default.
- W2094131489 cites W1502669108 @default.
- W2094131489 cites W2003522716 @default.
- W2094131489 cites W2050779272 @default.
- W2094131489 cites W2092735829 @default.
- W2094131489 cites W2092906867 @default.
- W2094131489 doi "https://doi.org/10.1090/s0002-9947-2012-05639-x" @default.
- W2094131489 hasPublicationYear "2012" @default.
- W2094131489 type Work @default.
- W2094131489 sameAs 2094131489 @default.
- W2094131489 citedByCount "16" @default.
- W2094131489 countsByYear W20941314892013 @default.
- W2094131489 countsByYear W20941314892014 @default.
- W2094131489 countsByYear W20941314892015 @default.
- W2094131489 countsByYear W20941314892016 @default.
- W2094131489 countsByYear W20941314892017 @default.
- W2094131489 countsByYear W20941314892019 @default.
- W2094131489 countsByYear W20941314892020 @default.
- W2094131489 countsByYear W20941314892021 @default.
- W2094131489 countsByYear W20941314892022 @default.
- W2094131489 countsByYear W20941314892023 @default.
- W2094131489 crossrefType "journal-article" @default.
- W2094131489 hasAuthorship W2094131489A5067477971 @default.
- W2094131489 hasAuthorship W2094131489A5078002315 @default.
- W2094131489 hasBestOaLocation W20941314891 @default.
- W2094131489 hasConcept C114614502 @default.
- W2094131489 hasConcept C136119220 @default.
- W2094131489 hasConcept C145620117 @default.
- W2094131489 hasConcept C17744445 @default.
- W2094131489 hasConcept C199539241 @default.
- W2094131489 hasConcept C202444582 @default.
- W2094131489 hasConcept C26979961 @default.
- W2094131489 hasConcept C2781409172 @default.
- W2094131489 hasConcept C33923547 @default.
- W2094131489 hasConcept C73648015 @default.
- W2094131489 hasConcept C83677898 @default.
- W2094131489 hasConcept C94625758 @default.
- W2094131489 hasConceptScore W2094131489C114614502 @default.
- W2094131489 hasConceptScore W2094131489C136119220 @default.
- W2094131489 hasConceptScore W2094131489C145620117 @default.
- W2094131489 hasConceptScore W2094131489C17744445 @default.
- W2094131489 hasConceptScore W2094131489C199539241 @default.
- W2094131489 hasConceptScore W2094131489C202444582 @default.
- W2094131489 hasConceptScore W2094131489C26979961 @default.
- W2094131489 hasConceptScore W2094131489C2781409172 @default.
- W2094131489 hasConceptScore W2094131489C33923547 @default.
- W2094131489 hasConceptScore W2094131489C73648015 @default.
- W2094131489 hasConceptScore W2094131489C83677898 @default.
- W2094131489 hasConceptScore W2094131489C94625758 @default.
- W2094131489 hasIssue "9" @default.
- W2094131489 hasLocation W20941314891 @default.
- W2094131489 hasLocation W20941314892 @default.
- W2094131489 hasOpenAccess W2094131489 @default.
- W2094131489 hasPrimaryLocation W20941314891 @default.
- W2094131489 hasRelatedWork W1516729419 @default.
- W2094131489 hasRelatedWork W1532953111 @default.
- W2094131489 hasRelatedWork W1978042415 @default.
- W2094131489 hasRelatedWork W1996580892 @default.
- W2094131489 hasRelatedWork W2094131489 @default.
- W2094131489 hasRelatedWork W2105572611 @default.
- W2094131489 hasRelatedWork W2371181305 @default.
- W2094131489 hasRelatedWork W2371512749 @default.
- W2094131489 hasRelatedWork W2789563236 @default.
- W2094131489 hasRelatedWork W3120238284 @default.
- W2094131489 hasVolume "364" @default.
- W2094131489 isParatext "false" @default.
- W2094131489 isRetracted "false" @default.
- W2094131489 magId "2094131489" @default.
- W2094131489 workType "article" @default.