Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094188906> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2094188906 abstract "Rough set-based rule induction is able to generate decision rules from a database and has mechanisms to handle noise and uncertainty in data. This technique facilitates managerial decision-making and strategy formulation. However, the process for RS-based rule induction is complex and computationally intensive. Moreover, operational databases that are used to run the day-to-day operations, thus large volumes of data are continually updated within a short period of time. The infrastructure required to analyze such large amounts of data must be able to handle extreme data volumes, to allow fast response times, and to automate decisions based on analytical models. This study proposes an Incremental Rough Set-based Rule Induction Agent (IRSRIA). Rule induction is based on creating agents for the main modeling processes. In addition, an incremental architecture is designed, to address large-scale dynamic database problems. A case study of a Home shopping company is used to show the validity and efficiency of this method. The results of experiments show that the IRSRIA can considerably reduce the computation time for inducing decision rules, while maintaining the same quality of rules." @default.
- W2094188906 created "2016-06-24" @default.
- W2094188906 creator A5041963196 @default.
- W2094188906 creator A5066262998 @default.
- W2094188906 date "2013-01-01" @default.
- W2094188906 modified "2023-09-27" @default.
- W2094188906 title "An Agent Model for Incremental Rough Set-Based Rule Induction: A Big Data Analysis in Sales Promotion" @default.
- W2094188906 cites W1479892260 @default.
- W2094188906 cites W1513767563 @default.
- W2094188906 cites W1518554751 @default.
- W2094188906 cites W1972932886 @default.
- W2094188906 cites W2001594935 @default.
- W2094188906 cites W2014016226 @default.
- W2094188906 cites W2032069808 @default.
- W2094188906 cites W2038779648 @default.
- W2094188906 cites W2050871209 @default.
- W2094188906 cites W2063537071 @default.
- W2094188906 cites W2068033140 @default.
- W2094188906 cites W2103640577 @default.
- W2094188906 cites W2112716904 @default.
- W2094188906 cites W2137307581 @default.
- W2094188906 cites W2148168051 @default.
- W2094188906 cites W2148764126 @default.
- W2094188906 cites W2161503451 @default.
- W2094188906 cites W2293628850 @default.
- W2094188906 doi "https://doi.org/10.1109/hicss.2013.79" @default.
- W2094188906 hasPublicationYear "2013" @default.
- W2094188906 type Work @default.
- W2094188906 sameAs 2094188906 @default.
- W2094188906 citedByCount "3" @default.
- W2094188906 countsByYear W20941889062014 @default.
- W2094188906 countsByYear W20941889062015 @default.
- W2094188906 countsByYear W20941889062017 @default.
- W2094188906 crossrefType "proceedings-article" @default.
- W2094188906 hasAuthorship W2094188906A5041963196 @default.
- W2094188906 hasAuthorship W2094188906A5066262998 @default.
- W2094188906 hasConcept C111012933 @default.
- W2094188906 hasConcept C111919701 @default.
- W2094188906 hasConcept C11413529 @default.
- W2094188906 hasConcept C124101348 @default.
- W2094188906 hasConcept C149271511 @default.
- W2094188906 hasConcept C154945302 @default.
- W2094188906 hasConcept C177264268 @default.
- W2094188906 hasConcept C199360897 @default.
- W2094188906 hasConcept C2776780472 @default.
- W2094188906 hasConcept C41008148 @default.
- W2094188906 hasConcept C45374587 @default.
- W2094188906 hasConcept C84839998 @default.
- W2094188906 hasConcept C98045186 @default.
- W2094188906 hasConceptScore W2094188906C111012933 @default.
- W2094188906 hasConceptScore W2094188906C111919701 @default.
- W2094188906 hasConceptScore W2094188906C11413529 @default.
- W2094188906 hasConceptScore W2094188906C124101348 @default.
- W2094188906 hasConceptScore W2094188906C149271511 @default.
- W2094188906 hasConceptScore W2094188906C154945302 @default.
- W2094188906 hasConceptScore W2094188906C177264268 @default.
- W2094188906 hasConceptScore W2094188906C199360897 @default.
- W2094188906 hasConceptScore W2094188906C2776780472 @default.
- W2094188906 hasConceptScore W2094188906C41008148 @default.
- W2094188906 hasConceptScore W2094188906C45374587 @default.
- W2094188906 hasConceptScore W2094188906C84839998 @default.
- W2094188906 hasConceptScore W2094188906C98045186 @default.
- W2094188906 hasLocation W20941889061 @default.
- W2094188906 hasOpenAccess W2094188906 @default.
- W2094188906 hasPrimaryLocation W20941889061 @default.
- W2094188906 hasRelatedWork W110822640 @default.
- W2094188906 hasRelatedWork W1578973608 @default.
- W2094188906 hasRelatedWork W192150630 @default.
- W2094188906 hasRelatedWork W1978876071 @default.
- W2094188906 hasRelatedWork W2059488982 @default.
- W2094188906 hasRelatedWork W2121671122 @default.
- W2094188906 hasRelatedWork W2392972571 @default.
- W2094188906 hasRelatedWork W2507477038 @default.
- W2094188906 hasRelatedWork W58999166 @default.
- W2094188906 hasRelatedWork W1501835883 @default.
- W2094188906 isParatext "false" @default.
- W2094188906 isRetracted "false" @default.
- W2094188906 magId "2094188906" @default.
- W2094188906 workType "article" @default.